[1] DUDA R O, HART P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15(1): 11-15.
[2] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
[3] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[4] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[5] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[6] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
[7] MA N N, ZHANG X, ZHENG H T, et al. ShuffleNet v2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 116-131.
[8] 张宸嘉, 朱磊, 俞璐. 卷积神经网络中的注意力机制综述[J]. 计算机工程与应用, 2021, 57(20): 64-72.
ZHANG C J, ZHU L, YU L. Review of attention mechanism in convolutional neural networks[J]. Computer Engineering and Applications, 2021, 57(20): 64-72.
[9] 付国栋, 黄进, 杨涛, 等. 改进CBAM的轻量级注意力模型[J]. 计算机工程与应用, 2021, 57(20): 150-156.
FU G D, HUANG J, YANG T, et al. Improved lightweight attention model based on CBAM[J]. Computer Engineering and Applications, 2021, 57(20): 150-156.
[10] 孙萍, 胡旭东, 张永军. 结合注意力机制的深度学习图像目标检测[J]. 计算机工程与应用, 2019, 55(17): 180-184.
SUN P, HU X D, ZHANG Y J. Object detection based on deep learning and attention mechanism[J]. Computer Engineering and Applications, 2019, 55(17): 180-184.
[11] 李婕, 周顺, 朱鑫潮, 等. 结合多通道注意力的遥感图像飞机目标检测[J]. 计算机工程与应用, 2022, 58(1): 209-217.
LI J, ZHOU S, ZHU X C, et al. Remote sensing image aircraft target detection combined with multiple channel attention[J]. Computer Engineering and Applications, 2022, 58(1): 209-217.
[12] 徐诚极, 王晓峰, 杨亚东. Attention-YOLO: 引入注意力机制的YOLO检测算法[J]. 计算机工程与应用, 2019, 55(6): 13-23.
XU C J, WANG X F, YANG Y D. Attention-YOLO:YOLO detection algorithm that introduces attention mechanism[J]. Computer Engineering and Applications, 2019, 55(6): 13-23.
[13] 杨斌, 梁婧, 周佳薇, 等. 基于注意力机制的可解释点击率预估模型研究[J]. 计算机科学, 2023, 50(5): 12-20.
YANG B, LIANG J, ZHOU J W, et al. Study on interpreable click-through rate prediction based on attention mechanism[J]. Computer Science, 2023, 50(5): 12-20.
[14] 赵乐乐, 张丽萍, 赵凤荣. 基于注意力机制的Tree2Seq代码注释自动生成[J]. 计算机工程与科学, 2023, 45(4): 638-645.
ZHAO L L, ZHANG L P, ZHAO F R. Automatic code comment generation of Tree2Seq based on attention mechanism[J]. Computer Engineering & Science, 2023, 45(4): 638-645.
[15] 姜文涛, 赵琳琳, 涂潮. 双分支多注意力机制的锐度感知分类网络[J]. 模式识别与人工智能, 2023, 36(3): 252-267.
JIANG W T, ZHAO L L, XU C. Double-branch multi-attention mechanism based sharpness-aware classification network[J]. Pattern Recognition and Artificial Intelligence, 2023, 36(3): 252-267.
[16] BESAW L E, STIMAC P J. Deep convolutional neural networks for classifying GPR B-scans[C]//Proceedings of the International Society for Optical Engineering, 2015: 385-394.
[17] YAMASHITA R, NISHIIO M, DO R K G, et al. Convolutional neural networks: an overview and application in radiology[J]. Insights into Imaging, 2018, 9(4): 611-629.
[18] 张天助. 基于卷积神经网络的地下目标定位与介电常数估计研究[D]. 南昌: 南昌大学, 2019.
ZHANG T Z. Research on underground target location and dielectric constant estimation based on convolutional neural network[D]. Nanchang: Nanchang University, 2019.
[19] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[20] 赵迪, 叶盛波, 周斌. 基于 Grad-CAM 的探地雷达公路地下目标检测算法[J]. 电子测量技术, 2020(10): 113-118.
ZHAO D, YE S B, ZHOU B. Ground penetrating radar anomaly detection based on convolution Grad-CAM[J]. Electronic Measurement Technology, 2020(10): 113-118.
[21] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[22] 李姝凡. 基于探地雷达的混凝土内钢筋下病害识别方法研究[D]. 济南: 山东大学, 2020.
LI S F. Research on the identification method of diseases in concrete under reinforcement using GPR[D]. Jinan: Shandong University, 2020.
[23] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[24] LEI W, HOU F, XI J, et al. Automatic hyperbola detection and fitting in GPR B-scan image[J]. Automation in Construction, 2019, 106: 102839.
[25] LING J, QIAN R, SHANG K, et al. Research on the dynamic monitoring technology of road subgrades with time-lapse full-coverage 3D ground penetrating radar (GPR)[J]. Remote Sensing, 2022, 14(7): 1593.
[26] LI F, YANG F, YAN R, et al. Study on significance enhancement algorithm of abnormal features of urban road ground penetrating radar images[J]. Remote Sensing, 2022, 14(7): 1546.
[27] LI H, LI N, WU R, et al. GPR-RCNN: an algorithm of subsurface defect detection for airport runway based on GRP[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3001-3008.
[28] LIU Z, WU W, GU X, et al. Application of combining YOLO models and 3D GPR images in road detection and maintenance[J]. Remote Sensing, 2021, 13(6): 1081.
[29] SU Q, BI B, ZHANG P, et al. GPR image clutter suppression using Gaussian curvature decomposition in the PCA domain[J]. Remote Sensing, 2022, 14(19): 4879.
[30] KANG M S, KIM N, IM S B, et al. 3D GPR image-based UcNet for enhancing underground cavity detectability[J]. Remote Sensing, 2019, 11(21): 2545.
[31] LI S, GU X, XU X, et al. Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm[J]. Construction and Building Materials, 2021, 273: 121949.
[32] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[33] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[34] XIE S, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492-1500.
[35] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[36] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13708-13717.
[37] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017. |