Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (13): 23-35.DOI: 10.3778/j.issn.1002-8331.2312-0322
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHANG Yali, TIAN Qichuan, TANG Chaolin
Online:
2024-07-01
Published:
2024-07-01
张亚丽,田启川,唐超林
ZHANG Yali, TIAN Qichuan, TANG Chaolin. Review of Object Detection Based on Event Cameras[J]. Computer Engineering and Applications, 2024, 60(13): 23-35.
张亚丽, 田启川, 唐超林. 基于事件相机的目标检测算法研究[J]. 计算机工程与应用, 2024, 60(13): 23-35.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2312-0322
[1] FUKUSHIMA K, YAMAGUCHI Y, YASUDA M, et al. An electronic model of the retina[J]. Proceedings of the IEEE, 1970, 58(12): 1950-1951. [2] LICHTSTEINER P, POSCH C, DELBRUCK T. A 128×128 120 dB 15 μs latency asynchronous temporal contrast vision sensor[J]. IEEE Journal of Solid-State Circuits, 2008, 43(2): 566-576. [3] DELBRUCK T, LICHTSTEINER P. Fast sensory motor control based on event-based hybrid neuromorphic-procedural system[C]//Proceedings of the IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 2007: 845-848. [4] CONRADT J, BERNER R, COOK M, T, et al. An embedded AER dynamic vision sensor for low-latency pole balancing[C]//Proceedings of the IEEE 12th International Conference on Computer Vision Workshops, Kyoto, Japan, 2009: 780-785. [5] CONRADT J, COOK M, BERNER R, et al. A pencil balancing robot using a pair of AER dynamic vision sensors[C]//Proceedings of the IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, China, 2009: 781-784. [6] LITZENBERGER M, KOHN B, BELBACHIR A N, et al. Estimation of vehicle speed based on asynchronous data from a silicon retina optical sensor[C]//Proceedings of the IEEE Intelligent Transportation Systems Conference, Toronto, ON, Canada, 2006: 653-658. [7] SCHRAML S, BELBACHIR A. N, MILOSEVIC N, et al. Dynamic stereo vision system for real-time tracking[C]//Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 2010: 1409-1412. [8] DRAZEN D, LICHTSTEINER P, HAFLIGER P, et al. Toward real-time particle tracking using an event-based dynamic vision sensor[J]. Experiments in Fluids, 2011, 51(55): 1465-1469. [9] NI Z, PACORET C, BENOSMAN R B, et al. Asynchronous event‐based high speed vision for microparticle tracking[J]. Microscopy, 2012, 245(3): 236-244. [10] LEE J, DELBRUCK T, PARK P, et al. Live demonstration: gesture based remote control using stereo pair of dynamic vision sensors[C]//Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Korea (South), 2012: 741-745. [11] POSCH C, MATOLIN D, WOHLGENANNT R. A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS[J]. IEEE Journal of Solid-State Circuits, 2010, 46(1): 259-275. [12] BRANDLI C, BERNER R, YANG M, et al. A 240×180 130 dB 3 μs latency global shutter spatiotemporal vision sensor[J]. Solid-State Circuits, 2014, 49(10): 2333-2341. [13] MOEYS D P, CORRADI F, LI C H, et al. A sensitive dynamic and active pixel vision sensor for color or neural imaging applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12(1): 123-136. [14] AMIR A, TABA B, BERG D, et al. A low power, fully event-based gesture recognition system[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017: 7388-7397. [15] SERRANO-GOTARREDONA R, OSTER M, LICHTSTEINER P, et al. CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory-processing-learning-actuating system for high-speed visual object recognition and tracking[J]. IEEE Transactions on Neural Networks, 2009, 20(9): 1417-1438. [16] XU H, GAO Y, YU F, et al. End-to-end learning of driving models from large-scale video datasets[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017: 3530-3538. [17] LEVINSHTEIN A, STERE A, KUTULAKOS K N, et al. Fast super-pixels using geometric flows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2290-2297. [18] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020. [19] WIESMANN G, SCHRAML S, LITZENBERGER M, et al. Event-driven embodied system for feature extraction and object recognition in robotic applications[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 2012: 76-82. [20] CLADY X, IENG S H, BENOSMAN R. Asynchronous event-based corner detection and matching[J]. Neural Networks, 2015, 66: 91-106. [21] VALENTINA V, GLOVER A, BARTOLOZZI C. Fast event-based Harris corner detection exploiting the advantages of event-driven cameras[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016: 4144-4149. [22] MUEGGLER E, REBECQ H, GALLEGO G, et al. The event-camera dataset and simulator: event-based data for pose estimation, visual odometry, and SLAM[J]. The International Journal of Robotics Research, 2017, 36(2): 142-149. [23] PENG X, ZHAO B, YAN R, et al. Bag of events: an efficient probability-based feature extraction method for AER image sensors[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(4): 791-803. [24] RAMESH B, YANG H, ORCHARD G, et al. DART: distribution aware retinal transform for event-based cameras[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(11): 2767-2780. [25] AFSHAR S, COHEN G, WANG R, et al. The ripple pond: enabling spiking networks to see[J]. Frontiers in Neuroscience, 2013, 7: 212. [26] YAO M, GAO H H, ZHAO G S, et al. Temporal-wise attention spiking neural networks for event streams classification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021: 10201-10210. [27] NAGARAJ M, LIYANAGEDERA C M, ROY K. DOTIE - detecting objects through temporal isolation of events using a spiking architecture[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom, 2023: 4858-4864. [28] ZHAO C H, LI Y, LYU Y. Event-based real-time moving object detection based on IMU ego-motion compensation[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom, 2023: 690-696. [29] ZHU A Z, YUAN L, CHANEY K, et al. Unsupervised event-based learning of optical flow, depth, and egomotion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019: 989-997. [30] WANG Y, DU B, SHEN Y, et al. EV-gait: event-based robust gait recognition using dynamic vision sensors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019: 6351-6360. [31] GEHRIG D, LOQUERCIO A, DERPANIS K G, et al. End-to-end learning of representations for asynchronous event-based data[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 5632-5642. [32] CANNICI M, CICCONE M, ROMANONI A, et al. A differentiable recurrent surface for asynchronous event-based data[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2020: 136-152. [33] DENG Y, LI Y, CHEN H. AMAE: adaptive motion-agnostic encoder for event-based object classification[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4596-4603. [34] DENG Y, CHEN H, LI Y. MVF-Net: a multi-view fusion network for event-based object classification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(12): 8275-8284. [35] MESSIKOMMER N, GEHRIG D, LOQUERCIO A, et al. Event-based asynchronous sparse convolutional networks[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2020: 415-431. [36] MITROKHIN A, HUA Z Y, FERMULLER C, et al. Learning visual motion segmentation using event surfaces[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022: 14402-14411. [37] TAHERKHANI A, BELATRECHE A, LI Y H, et al. A review of learning in biologically plausible spiking neural networks[J]. Neural Netw, 2020, 122: 253-272. [38] BI Y, CHADHA A, ABBAS A, et al. Graph-based spatio-temporal feature learning for neuromorphic vision sensing[J]. IEEE Transactions on Image Processing, 2020, 29: 9084-9098. [39] LI Z Q, NIKLAUS S, SNAVELY N, et al. Neural scene flow fields for space-time view synthesis of dynamic scenes[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021: 6494-6504. [40] LI Y J, ZHOU H, YANG B B, et al. Graph-based asynchronous event processing for rapid object recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021: 914-923. [41] SCHAEFER S, GEHRIG D, SCARAMUZZA D. AEGNN: asynchronous event-based graph neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022: 12361-12371. [42] SUN D, JI H. Event-based object detection using graph neural networks[C]//Proceedings of the IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS), Xiangtan, China, 2023: 1895-1900. [43] GALLEGO G, DELBRüCK T, ORCHARD G, et al. Event-based vision: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 154-180. [44] CULURCIELLO E, ETIENNE-CUMMINGS R, BOAHEN K A. A biomorphic digital image sensor[J]. IEEE J Solid-State Circuits, 2003, 38(2): 281-294. [45] HUANG J, GUO M H, CHEN S S. A dynamic vision sensor with direct logarithmic output and full-frame picture-on-demand[C]//Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, USA, 2017: 1-4. [46] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105. [47] GALLEGO G, LUND J E A, MUEGGLER E, et al. Event-based, 6-DOF camera tracking from photometric depth maps[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(10): 2402-2412. [48] KIM H, HANDA A, BENOSMAN R, et al. Simultaneous mosaicing and tracking with an event camera[C]//Proceedings of the British Machine Vision Conference (BMVC), UK, 2014: 1-12. [49] SCHEERLINCK C, BARNES N, MAHONY R. Continuous-time intensity estimation using event cameras[C]//Proceedings of the Asian Conference on Computer Vision (ACCV), Perth, Australia, 2018: 308-324. [50] ORCHARD G, MEYER C, ETIENNE-CUMMINGS R, et al. HFirst: a temporal approach to object recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 2028-2040. [51] ZHAO B, DING R, CHEN S, et al. Feedforward categorization on AER motion events using cortex-like features in a spiking neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9): 1963-1978. [52] KOSTA A K, APOLINARIO M P E, ROY K. Live demonstration: ANN vs SNN vs hybrid architectures for event-based real-time gesture recognition and optical flow estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, BC, Canada, 2023: 4148-4149. [53] BARDOW P, DAVISON A J, LEUTENEGGER S. Simultaneous optical flow and intensity estimation from an event camera[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 884-892. [54] REBECQ H, RANFTL R, KOLTUN V, et al. Events-to-video: bringing modern computer vision to event cameras[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019: 3852-3861. [55] GEHRIG M, SCARAMUZZA D. Recurrent vision Transformers for object detection with event cameras[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023: 13884-13893. [56] MASSA R, MARCHISIO A, MARTINA M, et al. An efficient spiking neural network for recognizing gestures with a DVS camera on the loihi neuromorphic processor[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN), 2020. [57] CORDONE L, MIRAMOND B, THIERION P. Object detection with spiking neural networks on auto-motive event data[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 2022. [58] CANNICI M, CICCONE M, ROMANONI A, et al. Event-based convolutional networks for object detection in neuromorphic cameras[J]. arXiv:1805.07931, 2018. [59] WANG L, MOSTAFAVI I S M, HO Y S, et al. Event based high dynamic range image and very high frame rate video generation using conditional generative adversarial network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019: 10073-10082. [60] LAGORCE X, ORCHARD G, GALLUPI F, et al. HOTS: a hierarchy of event-based time-surfaces for pattern recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(7): 1346-1359. [61] AIMAR A, MOSTAFA H, CALABRESE E, et al. NullHop: a flexible convolutional neural network accelerator based on sparse representations of feature maps[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 644-656. [62] PEROT E, TOURNEMIRE P D, NITTI D, et al. Learning to detect objects with a 1 megapixel event camera[J]. arXiv:2009.13436, 2020. [63] FANG W, YU Z, CHEN Y, et al. Deep residual learning in spiking neural networks [J]. arXiv:2102.04159, 2021. [64] MAQUEDA A I, LOQUERCIO A, GALLEGO G, et al. Event-based vision meets deep learning on steering prediction for self-driving cars[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 5419-5427. [65] ZHU A, YUAN L, CHANEY K, et al. Ev-flownet: self-supervised optical flow estimation for event-based cameras[J]. arXiv:1802.06898, 2018. [66] DENG Y, CHEN H, LIU H, et al. A voxel graph CNN for object classification with event cameras[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022: 1162-1171. [67] CANNICI M, CICCONE M, ROMANONI A, et al. Asynchronous convolutional networks for object detection in neuromorphic cameras[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 2019: 1656-1665. [68] LIU M, DELBRUCK T. Adaptive time-slice block-matching optical flow algorithm for dynamic vision sensors[C]//Proceedings of the British Machine Vision Conference (BMVC), Newcastle, UK, 2018: 1-12. [69] ROY K, JAISWAL A, PANDA P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature, 2019, 575(7784): 607-617. [70] TOYOIZUMI T, PFISTER J, AIHARA K, et al. Spike-timing dependent plasticity and mutual information maximization for a spiking neuron model[C]//Advances in Neural Information Processing Systems, 2005. [71] SAFA A, SAHLI H, BOURDOUX A, et al. Learning event-based spatio-temporal feature descriptors via local synaptic plasticity: a biologically-realistic perspective of computer vision[J]. arXiv:2111.00791, 2021. [72] NEFTCI E, MOSTAFA H, ZENKE F. Surrogate gradient learning in spiking neural networks: bringing the power of gradient-based optimization to spiking neural networks[J]. IEEE Signal Processing Magazine, 2019, 36(6): 51-63. [73] FANG W, YU Z, CHEN Y, et al. Incorporating learnable membrane time constant to enhance learning of spiking neural networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021. [74] ORCHARD G, COHEN G, JAYAWANT A, et al. Converting static image datasets to spiking neuromorphic datasets using saccades[J]. Frontiers in Neuroscience, 2015, 9: 437. [75] SERRANO-GOTARREDONA T, LINARES-BARRANCO B. Poker-DVS and MNIST-DVS. Their history, how they were made, and other details[J]. Frontiers in Neuromorphic Engineering. Frontiers in Neuroscience, 2015, 9: 481. [76] KIM J, BAE J, PARK G, et al. N-ImageNet: towards robust, fine-grained object recognition with event cameras[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021: 2126-2136. [77] LI H, LIU H, JI X, et al. Cifar10-dvs: an event-stream dataset for object classification[J]. Frontiers in Neuroscience, 2017, 11: 309. [78] AMOS S, BRAMBILLA M, BOURDIS N, et al. HATS: histograms of averaged time surfaces for robust event-based object classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 1731-1740. [79] BI Y, CHADHA A, ABBAS A, et al. Graph-based object classification for neuromorphic vision sensing[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 491-501. [80] HWANG I, KIM J, KIM Y M. Ev-NeRF: event based neural radiance field[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2023: 837-847. |
[1] | OUYANG Bo, ZHU Yongjian, YANG Likang, WANG Benyuan. FA-SORT:Lightweight Multi-Vehicle Tracking Algorithm [J]. Computer Engineering and Applications, 2024, 60(9): 122-134. |
[2] | CAI Teng, CHEN Cifa, DONG Fangmin. Low-Light Object Detection Combining Transformer and Dynamic Feature Fusion [J]. Computer Engineering and Applications, 2024, 60(9): 135-141. |
[3] | PAN Wei, WEI Chao, QIAN Chunyu, YANG Zhe. Improved YOLOv8s Model for Small Object Detection from Perspective of Drones [J]. Computer Engineering and Applications, 2024, 60(9): 142-150. |
[4] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[5] | LI Zhonghua, LIN Chujun, ZHU Hengliang, LIAO Shiyu, BAI Yunqi. Small Object Detection Based on Structure Perception and Global Context Information [J]. Computer Engineering and Applications, 2024, 60(9): 292-298. |
[6] | ZOU Zhentao, LI Zeping. Improved YOLOv7 for UAV Image Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 173-181. |
[7] | HU Junfeng, LI Baicong, ZHU Hao, HUANG Xiaowen. Improved YOLOv8 Lightweight UAV Target Detection Algorithm [J]. Computer Engineering and Applications, 2024, 60(8): 182-191. |
[8] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[9] | XU Kui, LI Xinzhuo, ZHANG Li, ZHANG Junjie, YANG Ning. Safety Helmet Wearing Detection Algorithm for Distribution Network Construction in Natural Scenarios [J]. Computer Engineering and Applications, 2024, 60(8): 320-328. |
[10] | ZHENG Xiaoli, WANG Wei, DU Yuxuan, ZHANG Chuang. Demand Aware Attention Graph Neural Network for Session-Base Recommendation [J]. Computer Engineering and Applications, 2024, 60(7): 128-140. |
[11] | HU Weichao, GUO Yuyang, ZHANG Qi, CHEN Yanyan. Lightweight Traffic Monitoring Object Detection Algorithm Based on Improved YOLOX [J]. Computer Engineering and Applications, 2024, 60(7): 167-174. |
[12] | HE Wenhao, GE Haibo, CHENG Mengyang, AN Yu, MA Sai. Camouflage Object Detection Algorithm Based on Edge Attention and Reverse Orientation [J]. Computer Engineering and Applications, 2024, 60(7): 229-237. |
[13] | YAN Hong, YANG Fengyu, ZHONG Yihui, XIONG Yu, CHEN Yu’an. Survey on Test Input Selection and Metrics for Deep Neural Networks [J]. Computer Engineering and Applications, 2024, 60(6): 27-42. |
[14] | SU Jia, QIN Yichang, JIA Ze, WANG Jing. Small Object Detection Algorithm Based on ATO-YOLO [J]. Computer Engineering and Applications, 2024, 60(6): 68-77. |
[15] | LAI Jing’an, CHEN Ziqiang, SUN Zongwei, PEI Qingqi. Lightweight Foggy Weather Object Detection Method Based on YOLOv5 [J]. Computer Engineering and Applications, 2024, 60(6): 78-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||