Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (10): 198-208.DOI: 10.3778/j.issn.1002-8331.2301-0103
• Graphics and Image Processing • Previous Articles Next Articles
LI Runze, WANG Zilei
Online:
2024-05-15
Published:
2024-05-15
李润泽,王子磊
LI Runze, WANG Zilei. Domain Adaptive Object Detection Method Based on Feature Mutual Exclusion[J]. Computer Engineering and Applications, 2024, 60(10): 198-208.
李润泽, 王子磊. 特征互斥化的目标检测域适应方法[J]. 计算机工程与应用, 2024, 60(10): 198-208.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2301-0103
[1] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359. [2] 邱颖豫, 张柯, 杨欣毅. 面向旋转机械故障诊断的深度流形迁移学习[J]. 计算机工程与应用, 2022, 58(12): 289-298. QIU Y Y, ZHANG K, YANG X Y. Deep manifold transfer learning method for fault diagnosis of rotating machinery under different working conditions[J]. Computer Engineering and Applications, 2022, 58(12): 289-298. [3] 赵鹏飞,李艳玲,林民. 结合胶囊网络的领域适应意图识别[J]. 计算机工程与应用, 2021, 57(21): 188-194. ZHAO P F, LI Y L, LIN M. Intent detection of domain adaptation combined with capsule network[J]. Computer Engineering and Applications, 2021, 57(21): 188-194. [4] CAI Q, PAN Y, NGO C W, et al. Exploring object relation in mean teacher for cross-domain detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 11457-11466. [5] TARVAINEN A, VALPOLA H. Weight-averaged consistency targets improve semi-supervised deep learning results[J]. arXiv:1703.01780, 2017. [6] DENG J, LI W, CHEN Y, et al. Unbiased mean teacher for cross-domain object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4091-4101. [7] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 2223-2232. [8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. [10] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, 2015. [11] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636. [12] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021. [13] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. [14] LI F, ZHANG H, LIU S, et al. DN-DETR: accelerate DETR training by introducing query denoising[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 13619-13627. [15] KIM T, JEONG M, KIM S, et al. Diversify and match: a domain adaptive representation learning paradigm for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12456-12465. [16] HSU H K, YAO C H, TSAI Y H, et al. Progressive domain adaptation for object detection[C]//Proceedings of the 2020 IEEE/CVF Winter Conference on Applications of Computer Vision, 2020: 749-757. [17] CHEN Y, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3339-3348. [18] SAITO K, USHIKU Y, HARADA T, et al. Strong-weak distribution alignment for adaptive object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 6956-6965. [19] HE Z, ZHANG L. Multi-adversarial Faster-RCNN for unrestricted object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 6668-6677. [20] CHEN C, ZHENG Z, DING X, et al. Harmonizing transferability and discriminability for adapting object detectors[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8869-8878. [21] CHEN C, ZHENG Z, HUANG Y, et al. I3Net: implicit instance-invariant network for adapting one-stage object detectors[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12576-12585. [22] LI C, DU D, ZHANG L, et al. Spatial attention pyramid network for unsupervised domain adaptation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, 2020: 481-497. [23] VS V, GUPTA V, OZA P, et al. Mega-CDA: memory guided attention for category-aware unsupervised domain adaptive object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4516-4526. [24] ZHANG Y, WANG Z, MAO Y. RPN prototype alignment for domain adaptive object detector[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12425-12434. [25] CHEN C, LI J, ZHENG Z, et al. Dual bipartite graph learning: a general approach for domain adaptive object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 2703-2712. [26] WANG Y, ZHANG R, ZHANG S, et al. Domain-specific suppression for adaptive object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9603-9612. [27] WU A, LIU R, HAN Y, et al. Vector-decomposed disentanglement for domain-invariant object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 9342-9351. [28] REZAEIANARAN F, SHETTY R, ALJUNDI R, et al. Seeking similarities over differences: similarity-based domain alignment for adaptive object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 9204-9213. [29] ZHAO L, WANG L. Task-specific inconsistency alignment for domain adaptive object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 14217-14226. [30] LI W, LIU X, YUAN Y. SIGMA: semantic-complete graph matching for domain adaptive object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5291-5300. [31] ZHOU W, DU D, ZHANG L, et al. Multi-granularity alignment domain adaptation for object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 9581-9590. [32] YU J, LIU J, WEI X, et al. Cross-domain object detection with mean-teacher transformer[J]. arXiv:2205.01643, 2022. [33] XU C D, ZHAO X R, JIN X, et al. Exploring categorical regularization for domain adaptive object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11724-11733. [34] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096-2130. [35] KIM S, CHOI J, KIM T, et al. Self-training and adversarial background regularization for unsupervised domain adaptive one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 6092-6101. |
[1] | LI Houjun, WEI Boquan. Attribute Distillation for Zero-Shot Recognition [J]. Computer Engineering and Applications, 2024, 60(9): 219-227. |
[2] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[3] | LI Zhonghua, LIN Chujun, ZHU Hengliang, LIAO Shiyu, BAI Yunqi. Small Object Detection Based on Structure Perception and Global Context Information [J]. Computer Engineering and Applications, 2024, 60(9): 292-298. |
[4] | OUYANG Bo, ZHU Yongjian, YANG Likang, WANG Benyuan. FA-SORT:Lightweight Multi-Vehicle Tracking Algorithm [J]. Computer Engineering and Applications, 2024, 60(9): 122-134. |
[5] | CAI Teng, CHEN Cifa, DONG Fangmin. Low-Light Object Detection Combining Transformer and Dynamic Feature Fusion [J]. Computer Engineering and Applications, 2024, 60(9): 135-141. |
[6] | PAN Wei, WEI Chao, QIAN Chunyu, YANG Zhe. Improved YOLOv8s Model for Small Object Detection from Perspective of Drones [J]. Computer Engineering and Applications, 2024, 60(9): 142-150. |
[7] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[8] | XU Kui, LI Xinzhuo, ZHANG Li, ZHANG Junjie, YANG Ning. Safety Helmet Wearing Detection Algorithm for Distribution Network Construction in Natural Scenarios [J]. Computer Engineering and Applications, 2024, 60(8): 320-328. |
[9] | ZOU Zhentao, LI Zeping. Improved YOLOv7 for UAV Image Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 173-181. |
[10] | HU Junfeng, LI Baicong, ZHU Hao, HUANG Xiaowen. Improved YOLOv8 Lightweight UAV Target Detection Algorithm [J]. Computer Engineering and Applications, 2024, 60(8): 182-191. |
[11] | SHEN Haiyun, HUANG Zhongyi, WANG Haichuan, YU Honghao. Improved Tracktor-Based Pedestrian Multi-Objective Tracking Algorithm [J]. Computer Engineering and Applications, 2024, 60(8): 242-249. |
[12] | HU Weichao, GUO Yuyang, ZHANG Qi, CHEN Yanyan. Lightweight Traffic Monitoring Object Detection Algorithm Based on Improved YOLOX [J]. Computer Engineering and Applications, 2024, 60(7): 167-174. |
[13] | HE Wenhao, GE Haibo, CHENG Mengyang, AN Yu, MA Sai. Camouflage Object Detection Algorithm Based on Edge Attention and Reverse Orientation [J]. Computer Engineering and Applications, 2024, 60(7): 229-237. |
[14] | HU Wei, XU Qiaozhi, GE Xiangwei, YU Lei. Review of Unsupervised Domain Adaptation in Medical Image Segmentation [J]. Computer Engineering and Applications, 2024, 60(6): 10-26. |
[15] | SU Jia, QIN Yichang, JIA Ze, WANG Jing. Small Object Detection Algorithm Based on ATO-YOLO [J]. Computer Engineering and Applications, 2024, 60(6): 68-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||