Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (8): 16-30.DOI: 10.3778/j.issn.1002-8331.2307-0330
• Research Hotspots and Reviews • Previous Articles Next Articles
SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen
Online:
2024-04-15
Published:
2024-04-15
孙石磊,李明,刘静,马金刚,陈天真
SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification[J]. Computer Engineering and Applications, 2024, 60(8): 16-30.
孙石磊, 李明, 刘静, 马金刚, 陈天真. 深度学习在糖尿病视网膜病变分类领域的研究进展[J]. 计算机工程与应用, 2024, 60(8): 16-30.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2307-0330
[1] YANG Z, TAN T E, SHAO Y, et al. Classification of diabetic retinopathy: past, present and future[J]. Frontiers in Endocrinology, 2022, 13: 1079217. [2] SHANKAR K, ZHANG Y, LIU Y, et al. Hyperparameter tuning deep learning for diabetic retinopathy fundus image classification[J]. IEEE Access, 2020, 8: 118164-118173. [3] SHARAFELDEEN A, ELSHARKAWY M, KHALIFA F, et al. Precise higher-order reflectivity and morphology models for early diagnosis of diabetic retinopathy using OCT images[J]. Scientific Reports, 2021, 11(1): 4730. [4] 韩长明, 彭福来, 陈财, 等.基于脑电信号的癫痫发作预测研究进展[J].生物医学工程学杂志, 2021, 38(6): 1193-1202. HAN C M, PENG F L, CHEN C, et al. Research progress of epileptic seizure predictions based on electroencephalogram signals[J]. Journal of Biomedical Engineering, 2021, 38(6): 1193-1202. [5] 陆言巧, 沈兰, 何奔.人工智能在心血管疾病的辅助诊疗中的应用[J].上海交通大学学报(医学版), 2020, 40(2): 259-262. LU Y W, SHEN L, HE B. Application of artificial inte-lligence in assisted diagnosis and treatment of cardio-vascular disease[J]. Diseases. Journal of Shanghai Jiao Tong University (Medical Science), 2020, 40(2): 259-262. [6] VUJOSEVIC S, ALDINGTON S J, SILVA P, et al. Screening for diabetic retinopathy: new perspectives and challenges[J]. The Lancet Diabetes & Endocrinology, 2020, 8(4): 337-347. [7] AJIT A, ACHARYA K, SAMANTA A. A review of convolutional neural networks[C]//Proceedings of the 2020 International Conference on Emerging Trends In Information Technology and Engineering, 2020: 1-5. [8] ADEM K. Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks[J]. Expert Systems with Applications, 2018, 114: 289-295. [9] 杨培伟, 周余红, 邢岗, 等.卷积神经网络在生物医学图像上的应用进展[J].计算机工程与应用, 2021, 57(7): 44-58. YANG P W, ZHOU Y H, XING G, et al. Applications of convolutional neural network in biomedical image[J]. Computer Engineering and Applications, 2021, 57(7): 44-58. [10] 范家伟, 张如如, 陆萌, 等.深度学习方法在糖尿病视网膜病变诊断中的应用[J].自动化学报, 2021, 47(5): 985-1004. FAN J W, ZHANG R R, LU M, et al. Applications of deep learning techniques for diabetic retinal diagnosis[J]. Acta Automatica Sinica, 2021, 47(5): 985-1004. [11] VIJ R, ARORA S. A systematic review on diabetic retinopathy detection using deep learning techniques[J]. Archives of Computational Methods in Engineering, 2023, 30(3): 2211-2256. [12] NADEEM M W, GOH H G, HUSSAIN M, et al. Deep learning for diabetic retinopathy analysis: a review, research challenges, and future directions[J]. Sensors, 2022, 22: 6780. [13] ASIRI N, HUSSAIN M, AL ADEL F, et al. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: a survey[J]. Artificial Intelligence in Medicine, 2019, 99: 101701. [14] 聂永琦, 曹慧, 杨锋, 等.深度学习在糖尿病视网膜病灶检测中的应用综述[J].计算机工程与应用, 2021, 57(20): 25-41. NIE Y Q, CAO H, YANG F, et al. Review of application of deep learning in detection of diabetic retinal lesions[J]. Computer Engineering and Applications, 2021, 57(20): 25-41. [15] Kaggle[EB/OL].(2021-01-25)[2023-06-30].http: //www.kagglecom/c/diabetic-retinopathy-detection/discussion/15617. [16] DECENCIERE E, CAZUGUEL G, ZHANG X, et al. TeleOphta: machine learning and image processing methods for teleophthalmology[J]. IRBM, 2013, 34(2): 196-203. [17] KAUPPI T, KALESNYKIENE V, KAMARAINEN J K, et al. The DIARETDB1 diabetic retinopathy database and evaluation protocol[C]//Proceedings of the British Machine Vision Conference, 2007. [18] HOOVER A D, KOUZNETSOVA V, GOLDBAUM M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J]. IEEE Transactions on Medical imaging, 2000, 19(3): 203-210. [19] DECENCIèRE E, ZHANG X, CAZUGUEL G, et al. Feedback on a publicly distributed image database: the MESSIDOR database[J]. Image Analysis & Stereology, 2014, 33(3): 231-234. [20] PORWAL P, PACHADE S, KAMBLE R, et al. Indian diabetic retinopathy image dataset (IDRiD)[J]. IEEE DataPort, 2018, 2. [21] HOLLOW F. Diabetes eye health: a guide for health professionals[Z]. The Fred Hollows Foundation in Partnership with the International Diabetes Federation (IDF), 2015. [22] KANTH S, JAISWAL A, KAKKAR M. Identification of different stages of Diabetic Retinopathy using artificial neural network[C]//Proceedings of the 2013 Sixth International Conference on Contemporary Computing (IC3), 2013: 479-484. [23] HARUN N H, YUSOF Y, HASSAN F, et al. Classification of fundus images for diabetic retinopathy using artificial neural network[C]//Proceedings of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology, 2019: 498-501. [24] XU K, FENG D, MI H. Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image[J]. Molecules, 2017, 22(12): 2054. [25] LAM C, YI D, GUO M, et al. Automated detection of diabetic retinopathy using deep learning[C]//AMIA Summits on Translational Science Proceedings, 2018: 147-155. [26] PIRES R, AVILA S, WAINER J, et al. A data-driven approach to referable diabetic retinopathy detection[J]. Artificial Intelligence in Medicine, 2019, 96: 93-106. [27] SKOUTA A, ELMOUFIDI A, JAI-ANDALOUSSI S, et al. Automated binary classification of diabetic retinopathy by convolutional neural networks[C]//Advances in Intelligent Systems and Computing, 2021: 177-187. [28] ADRIMAN R, MUCHTAR K, MAULINA N. Performance evaluation of binary classification of diabetic retinopathy through deep learning techniques using texture feature[J]. Procedia Computer Science, 2021, 179: 88-94. [29] ASIA A O, ZHU C Z, ALTHUBITI S A, et al. Detection of diabetic retinopathy in retinal fundus images using CNN classification models[J]. Electronics, 2022, 11(17): 2740. [30] DAS S, SAHA S K. Diabetic retinopathy detection and classification using CNN tuned by genetic algorithm[J]. Multimedia Tools and Applications, 2022, 81(6): 8007-8020. [31] WILKINSON C P, FERRIS III F L, KLEIN R E, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9): 1677-1682. [32] SEBASTIAN A, ELHARROUSS O, AL-MAADEED S, et al. A survey on deep-learning-based diabetic retinopathy classification[J]. Diagnostics, 2023, 13(3): 345. [33] LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[J]. arXiv: 1506.00019, 2015. [34] 王晋宇, 杨海涛, 李高源, 等.生成对抗网络及其图像处理应用研究进展[J].计算机工程与应用, 2021, 57(8): 26-35. WANG J Y, YANG H T, LI G Y, et al. Research progress of generative adversarial network and its application in image processing[J]. Computer Engineering and Applications, 2021, 57(8): 26-35. [35] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313: 504-507. [36] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017. [37] PRATT H, COENEN F, BROADBENT D M, et al. Convolutional neural networks for diabetic retinopathy[J]. Procedia Computer Science, 2016, 90: 200-205. [38] ISLAM S M S, HASAN M M, ABDULLAH S. Deep learning based early detection and grading of diabetic retinopathy using retinal fundus images[J]. arXiv:1812.10595, 2018. [39] MANSOUR R F. Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy[J]. Biomedical Engineering Letters, 2018, 8: 41-57. [40] HACISOFTAOGLU R E, KARAKAYA M, SALLAM A B. Deep learning frameworks for diabetic retinopathy detection with smartphone-based retinal imaging systems[J]. Pattern Recognition Letters, 2020, 135: 409-417. [41] 庞浩, 王枞.用于糖尿病视网膜病变检测的深度学习模型[J].软件学报, 2017, 28(11): 3018-3029. PANG H, WANG C. Deep learning model for diabetic r-etinopathy detection[J]. Journal of Software, 2017, 28(11): 3018-3029. [42] DE LA TORRE J, VALLS A, PUIG D. A deep learning interpretable classifier for diabetic retinopathy disease grading[J]. Neurocomputing, 2020, 396: 465-476. [43] ARAúJO T, ARESTA G, MENDON?A L, et al. DR| GRADUATE: uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images[J]. Medical Image Analysis, 2020, 63: 101715. [44] BHIMAVARAPU U, BATTINENI G. Deep learning for the detection and classification of diabetic retinopathy with an improved activation function[J].Healthcare, 2022, 11(1): 97. [45] FARAG M M, FOUAD M, ABDEL-HAMID A T. Automatic severity classification of diabetic retinopathy based on DenseNet and convolutional block attention module[J]. IEEE Access, 2022, 10: 38299-38308. [46] 白杰, 张赛, 李艳萍.基于PL-EfficientNet的糖尿病视网膜病变检测研究[J].电子设计工程, 2022, 30(21): 175-179. BAI J, ZHANG S, LI Y P. Diabetic retinopathy detection research based on PL-EfficientNet[J]. Electronic Design Engineering, 2022, 30(21): 175-179. [47] KOBAT S G, BAYGIN N, YUSUFOGLU E, et al. Automated diabetic retinopathy detection using horizontal and vertical patch division-based pre-trained DenseNET with digital fundus images[J]. Diagnostics, 2022, 12(8): 1975. [48] INGLE V, AMBAD P. Diabetic retinopathy classifier with convolution neural network[J]. Materials Today: Proceedings, 2023, 72: 1765-1773. [49] MEHBOOB A, AKRAM M U, ALGHAMDI N S, et al. A deep learning based approach for grading of diabetic retinopathy using large fundus image dataset[J]. Diagnostics, 2022, 12(12): 3084. [50] CAO J, CHEN J, ZHANG X, et al. Diabetic retinopathy classification based on dense connectivity and asymmetric convolutional neural network[J]. Neural Computing and Applications, 2022(1): 1-14. [51] GAYATHRI S, GOPI V P, PALANISAMY P. A lightweight CNN for Diabetic Retinopathy classification from fundus images[J]. Biomedical Signal Processing and Control, 2020, 62: 102115. [52] NAHIDUZZAMAN M, ISLAM M R, GONI M O F, et al. Diabetic retinopathy identification using parallel convolutional neural network based feature extractor and ELM classifier[J]. Expert Systems with Applications, 2023, 217: 1-11. [53] XU Z, DONG J. Multi-stage classification of diabetic retinopathy based on mixed attention network[C]//Proceedings of the 3rd International Conference on Electronic Communication and Artificial Intelligence, 2022: 495-502. [54] LI Y, SONG Z, KANG S, et al. Semi-supervised auto-encoder graph network for diabetic retinopathy grading[J]. IEEE Access, 2021, 9: 140759-140767. [55] NNEJI G U, CAI J, DENG J, et al. Identification of diabetic retinopathy using weighted fusion deep learning based on dual-channel fundus scans[J]. Diagnostics, 2022, 12(2): 540. [56] ALJEHANE N O. An intelligent moth flame optimization with inception network for diabetic retinopathy detection and grading[C]//Proceedings of the 2nd International Conference on Computing and Information Technology, 2022: 370-373. [57] BODAPATI J D, NARALASETTI V, SHAREEF S N, et al. Blended multi-modal deep convnet features for diabetic retinopathy severity prediction[J]. Electronics, 2020, 9(6): 914. [58] DHIRAVIDACHELVI E, SENTHIL PANDI S, PRABAVATHI R, et al. Artificial humming bird optimization-based hybrid CNN-RNN for accurate exudate classification from fundus images[J]. Journal of Digital Imaging, 2023, 36(1): 59-72. [59] MRIDHA K, SHORNA M M, AREFIN N, et al. DBNet: detect diabetic retinopathy to stop blindness before it’s too late[C]//Proceedings of the 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), 2022: 1-6. [60] ZHOU Y, WANG B, HE X, et al. DR-GAN: conditional generative adversarial network for fine-grained lesion synthesis on diabetic retinopathy images[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 26(1): 56-66. [61] ZHENG C, XIE X, ZHOU K, et al. Assessment of generative adversarial networks model for synthetic optical coherence tomography images of retinal disorders[J]. Translational Vision Science & Technology, 2020, 9(2): 29. [62] YOO T K, CHOI J Y, KIM H K, et al. Adopting low-shot deep learning for the detection of conjunctival melanoma using ocular surface images[J]. Computer Methods and Programs in Biomedicine, 2021, 205: 106086. [63] ARUNKUMAR R, KARTHIGAIKUMAR P. Multi-retinal disease classification by reduced deep learning features[J]. Neural Computing and Applications, 2017, 28: 329-334. [64] HUGHES J, HARAN M. Dimension reduction and alleviation of confounding for spatial generalized linear mixed models[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2013, 75(1): 139-159. [65] SYAHPUTRA M F, RAHMAH M, JAYA I, et al. Diabetic retinopathy identification using deep believe network[J]. Journal of Physics: Conference Series, 2019, 1235: 012103. [66] TEHRANI A A, NICKFARJAM A M, EBRAHIMPOUR-KOMLEH H, et al. Multi-input 2-dimensional deep belief network: diabetic retinopathy grading as case study[J]. Multimedia Tools and Applications, 2021, 80: 6171-6186. [67] JIANG H, YANG K, GAO M, et al. An interpretable ensemble deep learning model for diabetic retinopathy disease classification[C]//Proceedings of the 41st Annual International Conference of the IEEE Engineering In Medicine and Biology Society, 2019: 2045-2048. [68] KHALED O, EL-SAHHAR M, EL-DINE M A, et al. Cascaded architecture for classifying the preliminary stages of diabetic retinopathy[C]//Proceedings of the 9th International Conference on Software and Information Engineering, 2020: 108-112. [69] AL-KARAWI A, AV?AR E. A deep learning framework with edge computing for severity level detection of diabetic retinopathy[J]. Multimedia Tools and Applications, 2023, 82: 37687-37708. [70] MENAOUER B, DERMANE Z, EL HOUDA KEBIR N, et al. Diabetic retinopathy classification using hybrid deep learning approach[J]. SN Computer Science, 2022, 3(5): 357. [71] MONDAL S S, MANDAL N, SINGH K K, et al. EDLDR: an ensemble deep learning technique for detection and classification of diabetic retinopathy[J]. Diagnostics, 2023, 13(1): 124. [72] YANG H, CHEN J, XU M. Fundus disease image classification based on improved transformer[C]//Proceedings of the 2021 International Conference on Neuromorphic Computing, 2021: 207-214. [73] RAJKUMAR R S, JAGATHISHKUMAR T, RAGUL D, et al. Transfer learning approach for diabetic retinopathy detection using residual network[C]//Proceedings of the 6th International Conference on Inventive Computation Technologies, 2021: 1189-1193. [74] LE D, ALAM M, YAO C K, et al. Transfer learning for automated OCTA detection of diabetic retinopathy[J]. arXiv: 1910.01796, 2019. [75] SUGENO A, ISHIKAWA Y, OHSHIMA T, et al. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning[J]. Computers in Biology and Medicine, 2021, 137: 104795. [76] GANGWAR A K, RAVI V. Diabetic retinopathy detection using transfer learning and deep learning[C]//Evolution in Computational Intelligence: Frontiers in Intelligent Computing: Theory and Applications (FICTA 2020), 2021: 679-689. [77] TANG M C S, TEOH S S, IBRAHIM H, et al. A deep learning approach for the detection of neovascularization in fundus images using transfer learning[J]. IEEE Access, 2022, 10: 20247-20258. [78] BODAPATI J D, SHAIK N S, NARALASETTI V. Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(10): 9825-9839. [79] TARIQ H, RASHID M, JAVED A, et al. Performance analysis of deep-neural-network-based automatic diagnosis of diabetic retinopathy[J]. Sensors, 2021, 22(1): 205. [80] GOUR N, KHANNA P. Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network[J]. Biomedical Signal Processing and Control, 2021, 66: 102329. [81] GU Z, LI Y, WANG Z, et al. Classification of diabetic retinopathy severity in fundus images using the vision transformer and residual attention[J]. Computational Intelligence and Neuroscience, 2023,9414: 1-12. [82] SUN R, LI Y, ZHANG T, et al. Lesion-aware transformers for diabetic retinopathy grading[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10938-10947. [83] YAO Z, YUAN Y, SHI Z, et al. FunSwin: a deep learning method to analysis diabetic retinopathy grade and macular edema risk based on fundus images[J]. Frontiers in Physiology, 2022, 13: 961386. [84] WU K, PENG B, ZHAI D. Multi-granularity dilated transformer for lung nodule classification via local focus scheme[J]. Applied Sciences, 2022, 13(1): 377. [85] MURTHY S, PRASAD P M K. Adversarial transformer network for classification of lung cancer disease from CT scan images[J]. Biomedical Signal Processing and Control, 2023, 86: 105327. [86] JIANG H, XU J, SHI R, et al. A multi-label deep learning model with interpretable grad-CAM for diabetic retinopathy classification[C]//Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, 2020: 1560-1563. [87] PAPADOPOULOS A, TOPOUZIS F, DELOPOULOS A. An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images[J]. Scientific Reports, 2021, 11(1): 14326. |
[1] | WANG Cailing, YAN Jingjing, ZHANG Zhidong. Review on Human Action Recognition Methods Based on Multimodal Data [J]. Computer Engineering and Applications, 2024, 60(9): 1-18. |
[2] | LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang. Research Progress of Image Style Transfer Based on Neural Network [J]. Computer Engineering and Applications, 2024, 60(9): 30-47. |
[3] | YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(9): 65-78. |
[4] | SONG Jianping, WANG Yi, SUN Kaiwei, LIU Qilie. Short Text Classification Combined with Hyperbolic Graph Attention Networks and Labels [J]. Computer Engineering and Applications, 2024, 60(9): 188-195. |
[5] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[6] | QIU Yunfei, WANG Yifan. Multi-Level 3D Point Cloud Completion with Dual-Branch Structure [J]. Computer Engineering and Applications, 2024, 60(9): 272-282. |
[7] | YE Bin, ZHU Xingshuai, YAO Kang, DING Shangshang, FU Weiwei. Binocular Depth Measurement Method for Desktop Interaction Scene [J]. Computer Engineering and Applications, 2024, 60(9): 283-291. |
[8] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[9] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[10] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[11] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[12] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[13] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
[14] | JIANG Liang, ZHANG Cheng, WEI Dejian, CAO Hui, DU Yuzheng. Deep Learning in Aided Diagnosis of Osteoporosis [J]. Computer Engineering and Applications, 2024, 60(7): 26-40. |
[15] | LIU Jianhua, WANG Nan, BAI Mingchen. Progress of Instantiated Reality Augmentation Method for Smart Phone Indoor Scene Elements [J]. Computer Engineering and Applications, 2024, 60(7): 58-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||