[1] NGUYEN H T, NGUYEN L M. ILWAANet: an interactive lexicon-aware word-aspect attention network for aspect-level sentiment classification on social networking[J]. Expert Systems with Application, 2020, 146: 113065.
[2] PARK H J, SONG M, SHIN K S. Deep learning models and datasets for aspect term sentiment classification: implementing holistic recurrent attention on target-dependent memories[J]. Knowledge-Based Systems, 2020, 187: 104825.
[3] NAZIR A, RAO Y, WU L, et al. Issues and challenges of aspect-based sentiment analysis: a comprehensive survey[J]. IEEE Transactions on Affective Computing, 2021, 226:107134.
[4] WANG J, JIE L, LI S, et al. Aspect sentiment classification with both word-level and clause-level attention networks[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), 2018.
[5] 王婷, 杨文忠. 文本情感分析方法研究综述[J]. 计算机工程与应用, 2021, 57(12): 11-24.
WANG?T, YANG?W Z. Review of? text sentiment? analysis methods[J]. Computer Engineering and Applications, 2021, 57(12): 11-24.
[6] KRISHNA A, AKHILESH V, AICH A, et al. Sentiment analysis of restaurant reviews using machine learning techniques[C]//Proceedings of International Conference on Emerging Research in Electronics, Computer Science and Technology, (ICERECT 2018), 2019: 687-696.
[7] AWWALU J, BAKAR A A, YAAKUB M R. Hybrid N-gram model using Na?ve Bayes for classification of political sentiments on Twitter[J]. Neural Computing and Applications, 2019, 31: 9207-9220.
[8] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[J]. arXiv:1404.2188, 2014.
[9] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016: 606-615.
[10] MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[J]. arXiv:1709.00893, 2017.
[11] HUANG B, OU Y, CARLEY K M. Aspect level sentiment classification with attention-over-attention neural networks[C]//Proceedings of the 11th International Conference on Social, Cultural, and Behavioral Modeling (SBP-BRiMS 2018), Washington, DC, USA, 2018: 197-206.
[12] GU S, ZHANG L, HOU Y, et al. A position-aware bidirectional attention network for aspect-level sentiment analysis[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 774-784.
[13] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), 2014.
[14] DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 2014: 49-54.
[15] TANG D, QIN B, LIU T. Aspect level sentiment classification with deep memory network[J]. arXiv:1605.08900, 2016.
[16] SONG Y, WANG J, JIANG T, et al. Attentional encoder network for targeted sentiment classification[J]. arXiv:1902. 09314, 2019.
[17] SCARIA K, GUPTA H, SAWANT S A, et al. InstructABSA: instruction learning for aspect based sentiment analysis[J]. arXiv:2302.08624, 2023.
[18] ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks[J]. arXiv:1909.03477, 2019.
[19] ZHU Z, ZHANG D, LI L, et al. Knowledge-guided multi-granularity GCN for ABSA[J]. Information Processing & Management, 2023, 60(2): 103223.
[20] PENNINGTON J, SOCHER R, MANNING C D. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014: 1532-1543.
[21] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[22] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681.
[23] TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification[J]. arXiv:1512.01100, 2015.
[24] ZHOU J, HUANG J X, HU Q V, et al. SK-GCN: modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification[J]. Knowledge-Based Systems, 2020, 205(3): 106292.
[25] XU?H, LIU?B, SHU?L, et?al. BERT?post-training?for?review reading?comprehension?and?aspect-based?sentiment?analysis[J]. arXiv:1904.02232, 2019.
[26] CHEN F, YUAN Z, HUANG Y. Multi-source data fusion for aspect-level sentiment classification[J]. Knowledge-Based Systems, 2019, 187: 104831.
[27] TIAN Y, CHEN G, SONG Y. Enhancing aspect-level sentiment analysis with word dependencies[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, 2021: 3726-3739.
[28] ZHAO M, YANG J, ZHANG J, et al. Aggregated graph convolutional networks for aspect-based sentiment classification[J]. Information Sciences, 2022, 600: 73-93.
[29] RADFORD?A, NARASIMHAN?K, SALIMANS?T, et?al. Improving?language?understanding?by?generative?pre?training[J]. arXiv:1801.06146. 2018. |