Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (8): 1-15.DOI: 10.3778/j.issn.1002-8331.2308-0271
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHOU Bojun, CHEN Zhiyu
Online:
2024-04-15
Published:
2024-04-15
周伯俊,陈峙宇
ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning[J]. Computer Engineering and Applications, 2024, 60(8): 1-15.
周伯俊, 陈峙宇. 基于深度元学习的小样本图像分类研究综述[J]. 计算机工程与应用, 2024, 60(8): 1-15.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2308-0271
[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 26th Annual Conference?on Neural Information Processing Systems (NIPS’12), 2012: 1097-1105. [2] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444. [3] HE K, ZHANG X, REN S. Deep residual learning for image recognition[C]//Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), 2016: 770-778. [4] LAKE B M, SALAKHUTDINOV R, GROSS J, et al. One shot learning of simple visual concepts[J]. Cognitive Science Society, 2011, 33: 2568-2573. [5] DSD D, LEE C S G. A two-stage approach to few-shot learning for image recognition[J]. IEEE Transactions on Image Processing, 2020, 29(12): 3336-3350. [6] ZHOU B J, ZHAO J H, YAN C K, et al. Global and local knowledge distillation method for few-shot classification of electrical equipment[J]. Applied Science, 2023, 13(12): 7016-7028. [7] 黄文东. 基于元学习的小样本遥感图像分类研究[D]. 重庆: 重庆邮电大学, 2022. HUANG W D. Research on few-shot remote sensing image classification based on meta-learning[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2022. [8] FAN Q, ZHUO W, TANG C K, et al. Few-shot object detection with attention-RPN and multi-relation detector[C]//Proceedings of the 33rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020: 4012-4021. [9] 刘春磊, 陈天恩, 王聪, 等. 小样本目标检测研究综述[J]. 计算机科学与探索, 2023, 17(1): 53-73. LIU C L, CHEN T E, WANG C, et al. Survey of few-shot object detection[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 53-73. [10] HUTTER F, KOTTHOFF L, VANSCHOREN J. Automated machine learning: methods, systems, challenges[M]. [S.l.]:Springer Publishing Company, Incorporated, 2019. [11] ZHOU L, CUI P, JIA X, et al. Learning to select base classes for few-shot classification[C]//Proceedings of the 33rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020: 4623-4632. [12] ZHANG C, LI C, CHENG J. Few-shot visual classification using image pairs with binary transformation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(9): 2867-2871. [13] WANG Y Q, YAO Q M, KWOK J T, et al. Generalizing from a few examples: a survey on few-shot learning[J]. ACM Computing Surveys, 2020, 53(3): 1-34. [14] 刘颖, 雷研博, 范九伦, 等. 基于小样本学习的图像分类技术综述[J]. 自动化学报, 2021, 47(2): 297-315. LIU?Y, ?LEI?Y B, ?FAN?J L, ?et al. Survey on image classification technology based on small sample learning[J]. Acta Automatica?Sinica, ?2021, 47(2): 297-315. [15] 赵凯琳, 靳小龙, 王元卓. 小样本学习综述[J]. 软件学报, 2021, 32(2): 349-369. ZHAO K L, JIN X L, WANG Y Z. Survey on few-shot learning[J]. Journal of Software, 2021, 32(2): 349-369. [16] 祝钧桃, 姚光乐, 张葛祥, 等. 深度神经网络的小样本学习综述[J]. 计算机工程与应用, 2021, 57(7): 22-33. ZHU J T, YAO G L, ZHANG G X, et al. Survey of few shot learning of deep neural network[J]. Computer Engineering and Applications, 2021, 57(7): 22-33. [17] 胡西范, 陈世平. 基于机器学习的小样本学习综述[J]. 智能计算机与应用, 2021, 11(7): 191-195. HU X F, CHEN S P. A survey of few-shot learning based on machine learning[J]. Intelligent Computer and Applications, 2021, 11(7): 191-195. [18] 葛轶洲, 刘恒, 王言, 等. 小样本困境下的深度学习图像识别综述[J]. 软件学报, 2022, 33(1): 193-210. GE Y Z, LIU H, WANG Y, et al. Survey on deep learning image recognition in dilemma of small samples[J]. Journal of Software, 2022, 33(1): 193-210. [19] 彭云聪, 秦小林, 张力戈, 等. 面向图像分类的小样本学习算法综述[J]. 计算机科学, 2022, 49(5): 1-9. PENG Y C, QIN X L, ZHANG L G, et al. Survey on few-shot learning algorithms for image classification[J]. Computer Science, 2022, 49(5): 1-9. [20] 陈良臣, 傅德印. 面向小样本数据的机器学习方法研究综述[J]. 计算机工程, 2022, 48(11): 1-13. CHEN L C, FU D Y. Survey on machine learning methods for small sample data[J]. Computer Engineering, 2022, 48(11): 1-13. [21] 安胜彪, 郭昱岐, 白宇, 等. 小样本图像分类研究综述[J]. 计算机科学与探索, 2023, 17(3): 511-532. AN S B, GUO Y Q, BAI Y, et al. Survey of few-shot image classification research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. [22] 潘雪玲, 李国和, 郑艺峰. 面向深度网络的小样本学习综述[J]. 计算机应用研究, 2023, 40(10): 2881-2888. PAN X L, LI G H, ZHENG Y F. Survey on few-shot learning for deep network[J]. Application Research of Computers, 2023, 40(10): 2881-2888. [23] 罗建豪, 吴建鑫. 基于深度卷积特征的细粒度图像分类研究综述[J]. 自动化学报, 2017, 43(8): 1306-1318. LUO J H, WU J X. A survey on fine-grained image categorization using deep convolutional features[J]. Acta Automatica?Sinica, 2017, 43(8): 1306?1318. [24] 刘鑫, 周凯锐, 何玉琳, 等. 基于度量的小样本分类方法研究综述[J]. 模式识别与人工智能, 2021, 34(10): 909-923. LIU X, ZHOU K R, HE Y L, et al. Survey of metric-based few-shot classification[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(10): 909-923. [25] LIU W, ZHANG C, LIN G, et al. CRNet: cross-reference networks for few-shot segmentation[C]//Proceedings of the 33rd IEEE Conference on Computer Vision and Pattern Recognition(CVPR’20), 2020: 4164-4172. [26] SCHMIDHUBER J. Evolutionary principles in self-refe- rential learning[D]. Munich: Technical University of Munich, 1987. [27] HINTON G E, PLAUT D C. Using fast weights to deblur old memories[C]//Proceedings of the 9th Annual Conference of the Cognitive Science Society, 1987: 177-186. [28] VILALTA R, DRISSI Y. A perspective view and survey of meta-learning[J]. Artificial Intelligence Review, 2002, 18(2): 77-95. [29] MIKE H, JAN N R, ASKE P. A survey of deep me-ta-learning[J]. Artificial Intelligence Review, 2021, 54(6): 4483-4541. [30] HOSPEDALES T, ANTONIOU A, MICAELLI P, et al. Meta-learning in neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5149-5169. [31] VINYALS O, BLUNDELL C, LILLICAP T, et al. Matching networks for one shot learning[C]//Proceedings of the 30th Annual Conference?on Neural Information Processing Systems (NIPS’16), 2016: 3637-3645. [32] SANTORO A, BARTUNOV S, BOTVINICK M. One-shot learning with memory-augmented neural networks [C]//Proceedings of the 33rd International Conference on Machine learning (ICML’16), 2016: 1842-1850. [33] MISHRA N, ROHANINEJAD M, CHEN X, et al. A simple neural attentive meta-learner[J]. arXiv:1707.03141, 2017. [34] MUNKHDALAI T Y H. Meta networks[C]//Proceedings of the 34th International Conference on Machine Learning (ICML’17), 2017: 2554-2563. [35] FINN C, ABBEEL P, LEVINE S. ?Model-agnostic meta- learning for fast adaptation of deep network[C]//Proceedings of the 34th International Conference on Machine Learning(ICML’17), 2017: 1126-1135. [36] RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[C]//Proceedings of 5th International Conference on Learning Representations (ICLR’17), 2017: 1-17. [37] NICHOL A, ACHIAM J, SCHULMAN J. Reptile: on first-order meta-learning algorithms[J]. arXiv: 1803. 02999, 2018. [38] RAJESWARAN A, ?FINN C, KAKADE S, et al. Meta learning with implicit gradient[C]//Proceedings of the 32nd Annual Conference?on Neural Information Processing Systems(NIPS’18), 2018: 113-124. [39] RUSU A, RAO D, SYGNOWSKI J. Meta-learning with latent embedding optimization[C]//Proceedings of 6th International Conference on Learning Representations (ICLR’18), 2018: 1-17. [40] BAIK S, HONG S, LEE K M. Learning to forget for meta-learning[C]//Proceedings of the 33rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020: 2376-2384. [41] SNELL J, SWERRSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st Annual Conference?on Neural Information Processing Systems (NIPS’17), 2017: 4077-4087. [42] SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]//Proceedings of the 31st IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18), 2018: 1199-1208. [43] HOU R B, CHANG H, MA B P. Cross attention network for few-shot classification[C]//Proceedings of the 33rd Annual Conference?on Neural Information Processing Systems (NIPS’19), 2019: 4003-4014. [44] SIMON C, KONOUSZ P, NOCK R, et al. Adaptive sub-spaces for few-shot learning[C]//Proceedings of the 33rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020: 4135-4144. [45] LI A, HUANG W, LAN X, et al. Boosting few-shot learning with adaptive margin loss[C]//Proceedings of the 33rd IEEE Conference on Computer Vision and Pattern Recognition(CVPR’20), 2020: 12573-12581. [46] LI W, WANG L, XU J, et al. Revisiting local descriptor-based image-to-class measure for few-shot learning[C]//Proceedings of the 32nd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019: 7260-7268. [47] ZHANG C, CAI Y, LIN G, et al. DeepEMD: few-shot image classification with differentiable Earth Mover’s distance and structured classifiers[C]//Proceedings of the 33rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020: 12200-12210. [48] CHEN Y B, WANG X L, LIU Z, et al. A new meta-baseline for few-shot learning[C]//Proceedings of?the 34th AAAI Conference on Artificial Intelligence(AAAI’20), 2020: 1-8. [49] LIU Y, ZHANG W F, XIANG C, et al. Learning to affiliate: mutual centralized learning for few-shot classification[C]//Proceedings of the 35rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’22), 2022: 14391-14400. [50] LAKE B M, SALAKHUTDINOV R, TENENBAUM J B. Human-level concept learning through probabilistic program induction[J]. Science, 2015, 350: 1332-1338. [51] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. [52] REN M, TRIANTAFILLOU E, RAVI S, et al. Meta-learning for semi-supervised few-shot classification[C]//Proceedings of the 6th International Conference on Learning Representations (ICLR’18), 2018: 1-15. [53] ORESHKIN B, RODRIGUEZ P, LACOSTE A. TADAM: task dependent adaptive metric for improved few-shot learning[C]//Proceedings of the 32nd Annual Conference?on Neural Information Processing Systems (NIPS’18), 2018: 719-729. [54] YE H J, HU H X, ZHAN D C, et al. Learning embedding adaptation for few-shot learning[J]. arXiv:1812.03664, 2018. [55] 董安国, 张倩, 刘洪超, 等. 基于TSNE和多尺度稀疏自编码的高光谱图像分类[J]. 计算机工程与应用, 2019, 55(21):177-182. DONG A G, ZHANG Q, LIU H C, et al. Hyperspectral image classification based on TSNE and multiscale sparse auto-encoder[J]. Computer Engineering and Applications, 2019, 55(21): 177-182. [56] GARNELO M, ROSENBAUM D, MADDISON C J. Conditional neural processes[C]//Proceedings of the 35th International Conference on Machine Learning (ICML’18), 2018: 1704-1713. [57] 段港海. 结合小样本指导的元学习图像分类算法研究[D]. 长春: 吉林大学, 2023. DUAN G H. Few-shot directed meta-learning for image classification[D]. Changchun: Jilin University, 2023. [58] 刘杰豪. 基于深度判别性特征学习的少样本图像分类算法研究[D]. 广州: 广州大学, 2022. LIU J H. Research on few-shot image classification algorithm based on deep discriminative feature learning[D]. Guangzhou: Guangzhou University, 2022. [59] LI Z G, ZHOU F W, CHEN F, et al. Meta-SGD: learning to learn quickly for few-shot learning[J]. arXiv:1707.09835, 2017. [60] PARK E, OLIVA J B. Meta-curvature[C]//Proceedings of the 33rd Annual Conference?on Neural Information Processing Systems (NIPS’19), 2019: 3314-3324. [61] SONG X Y, ?GAO W B, ?YANG Y X, ?et al. ES-MAML: simple Hessian-free meta learning[C]//Proceedings of the 8th International Conference on Learning Representations (ICLR’20), 2020: 1-22. [62] SUN Q, LIU Y, CHUA T, et al. Meta-transfer learning for few-shot learning[C]//Proceedings of the 32nd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019: 403-412. [63] JAMAL M A, ?QI G J, ?SHAH M. Task agnostic meta-learning for few-shot learning[C]//Proceedings of the 32nd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019: 11711-11719. [64] TIAN H D, LIU B, YUAN X T. Meta-learning with network pruning[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV’20), 2020: 675-700. [65] VUORIO R, ?SUN S H, ?HU H X. Multimodal model-agnostic meta-learning via task-aware modulation[C]//Proceedings of the 33rd Annual Conference?on Neural Information Processing Systems (NIPS’19), 2019: 1-12. [66] LEE H B, LEE H, NA D, et al. Learning to balance: bayesian meta-learning for imbalanced and out-of-distribution tasks[C]//Proceedings of the 8th International Conference on Learning Representations (ICLR’20), 2020: 1-15. [67] FINN C, XU K, LEVINE S. Probabilistic model-agnostic meta-learning[C]//Proceedings of the 32nd Annual Conference?on Neural Information Processing Systems (NIPS’18), 2018: 9537-9548. [68] COLLINS L, ?MOKHTARI A, ?SHAKKOTTAI S. Task- robust model?agnostic meta?learning[C]//Proceedings of the 34th Annual Conference?on Neural Information Processing Systems (NIPS’20), 2020: 18860-18871. [69] 魏胜楠. 基于元学习的小样本图像分类方法研究[D]. 沈阳: 沈阳理工大学, 2023. WEI S N. Research on few-shot image classification method based on meta-learning[D]. Shenyang: Shenyang Ligong University, 2023. [70] 杜彦东, 冯林, 陶鹏, 等. 元迁移学习在少样本跨域图像分类中的研究[J]. 中国图象图形学报, 2023, 28(9): 2899-2912. DU Y D, FENG L, TAO P, et al. Meta-transfer learning in cross-domain image classification with few-shot learning[J]. Journal of Image and Graphics, 2023, 28(9): 2899-2912. [71] 李维刚, 甘平, 谢璐, 等. 基于样本对元学习的小样本图像分类方法[J]. 电子学报, 2022, 50(2): 295-304. LI W G, GAN P, XIE L, et al. A few-shot image classification method by pairwise-based meta learning[J]. Acta Electronica Sinica, 2022, 50(2): 295-304. [72] 江梦娟. 李群连续元学习算法研究[D]. 苏州: 苏州大学, 2022. JIANG M J. Research on Lie group continual meta learning algorithm[D]. Suzhou: Soochow University, 2022. [73] BATENI P, GOYAL R, MASRANI V. Improved few-shot visual classification[C]//Proceedings of the 33rd IEEE Conference on Computer Vision and Pattern Recognition(CVPR’20), 2020: 14481-14490. [74] NGUYEN V N, LOKSE S, WICKSTROM K. SEN: a novel feature normalization dissimilarity measure for prototypical few?shot learning networks[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV’20), 2020: 118-134. [75] GIDARIS S, BURSUC A, KOMODAKIS N. Boosting few-shot visual learning with self-supervision[C]//Proceedings of the 32nd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019: 8059-8068. [76] LI H, EIGEN D, DODGE S, et al. Finding task-relevant features for few-shot learning by category traversal[C]//Proceedings of the 32nd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019: 1-10. [77] WANG X, YU F, WANG R, et al. TAFE-Net: task-aware feature embeddings for low shot learning[C]//Proceedings of the 32nd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019: 1831-1840. [78] YE H J, HU H X, ZHAN D C. Learning embedding adaptation for few-shot learning with set-to-set functions[C]//Proceedings of the 33rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20), 2020: 8805-8814. [79] HUANG W, YUAN Z, YANG A, et al. TAE-Net: task-adaptive embedding network for few-shot remote sensing scene classification[J]. Remote Sensing, 2022, 14: 111-130. [80] WU F, SMITH J S, LU W. Attentive prototype few-shot learning with capsule network-based embedding[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV’20), 2020: 237-253. [81] LIU Y, LEE J, PARK M. Learning to propagate labels: transductive propagation network for few-shot learning[C]//Proceedings of the 7th International Conference on Learning Representations (ICLR’19), 2019: 1-8. [82] SAHOO D, ?HUNG L H, ?LIU C H, ?et al. Meta domain adaptation: meta-learning for few-shot learning under domain?shift[C]//Proceedings of the 7th International Conference on Learning Representations (ICLR’19), 2019: 1-8. [83] ZHAO A, DING M Y, LU Z W, et al. Domain-adaptive few-shot learning[J]. arXiv:2003.08626v1, 2020. [84] TSENG H Y, LEE H Y, HUANG J B, et al. Cross-domain few-shot classification via learned feature-wise transformation[C]//Proceedings of the 8th International Conference on Learning Representations (ICLR’20), 2020: 1-8. [85] GUAN J C, LU Z W, XIANG T, et al. Few-shot learning as domain adaptation: algorithm and analysis[C]//Proceedings of the 37th International Conference on Machine Learning(ICML’20), 2020: 1-10. [86] KIM D, KIM J, CHO S, et al. Universal few-shot learning of dense prediction tasks with visual token matching[C]//Proceedings of the 11th International Conference on Learning Representations (ICLR’23), 2023: 1-26. [87] LAI J X, YANG S Q, ZHOU J H, et al. Clustered-patch element connection for few-shot learning[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI’23), 2023: 991-998. [88] YANG Z Y, WANG J H, ZHU Y Y. Few-shot classification with contrastive learning[C]//Proceedings of the 18th European Conference on Computer Vision (ECCV’22), 2022: 293-309. |
[1] | LIU Muyun, BIAN Chunjiang, CHEN Hongzhen. Few-Shot Remote Sensing Aircraft Image Generation Algorithm Based on Feature Disentangling [J]. Computer Engineering and Applications, 2024, 60(9): 244-253. |
[2] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[3] | QIU Yunfei, WANG Yifan. Multi-Level 3D Point Cloud Completion with Dual-Branch Structure [J]. Computer Engineering and Applications, 2024, 60(9): 272-282. |
[4] | YE Bin, ZHU Xingshuai, YAO Kang, DING Shangshang, FU Weiwei. Binocular Depth Measurement Method for Desktop Interaction Scene [J]. Computer Engineering and Applications, 2024, 60(9): 283-291. |
[5] | WANG Cailing, YAN Jingjing, ZHANG Zhidong. Review on Human Action Recognition Methods Based on Multimodal Data [J]. Computer Engineering and Applications, 2024, 60(9): 1-18. |
[6] | LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang. Research Progress of Image Style Transfer Based on Neural Network [J]. Computer Engineering and Applications, 2024, 60(9): 30-47. |
[7] | YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(9): 65-78. |
[8] | SONG Jianping, WANG Yi, SUN Kaiwei, LIU Qilie. Short Text Classification Combined with Hyperbolic Graph Attention Networks and Labels [J]. Computer Engineering and Applications, 2024, 60(9): 188-195. |
[9] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[10] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[11] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[12] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[13] | XU Yangyu, GAO Baoyuan, GUO Jielong, SHAO Dongheng, WEI Xian. Model Robustness Enhancement Algorithm with Scale Invariant Condition Number Constraint [J]. Computer Engineering and Applications, 2024, 60(8): 140-147. |
[14] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[15] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||