Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (7): 58-69.DOI: 10.3778/j.issn.1002-8331.2309-0376
• Research Hotspots and Reviews • Previous Articles Next Articles
LIU Jianhua, WANG Nan, BAI Mingchen
Online:
2024-04-01
Published:
2024-04-01
刘建华,王楠,白明辰
LIU Jianhua, WANG Nan, BAI Mingchen. Progress of Instantiated Reality Augmentation Method for Smart Phone Indoor Scene Elements[J]. Computer Engineering and Applications, 2024, 60(7): 58-69.
刘建华, 王楠, 白明辰. 手机室内场景要素实例化现实增强方法研究进展[J]. 计算机工程与应用, 2024, 60(7): 58-69.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2309-0376
[1] 徐舒婷, 郑先伟, 谢潇, 等. 面向虚实融合的单体建筑物实时识别与定位[J]. 武汉大学学报 (信息科学版), 2023, 48(4): 542-549. XU S T, ZHENG X W, XIE X, et al. Real-time building instance recognition for vector map and real scene fusion[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 542-549. [2] ROH D, LEE J. Augmented reality-based navigation using deep learning-based pedestrian and personal mobility user recognition—a comparative evaluation for driving assistance[J]. IEEE Access, 2023, 11: 62200-62211. [3] WANG Z. An AR map virtual-real fusion method based on element recognition[J]. ISPRS International Journal of Geo-Information, 2023, 12: 126. [4] 陈锐志, 王磊, 李德仁, 等. 导航与遥感技术融合综述[J]. 测绘学报, 2019, 48(12): 1507-1522. CHEN R Z, WANG L, LI D R, et al. A survey on the fusion of the navigation and the remote sensing techniques[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1507-1522. [5] 陈锐志, 钱隆, 牛晓光, 等. 基于数据与模型双驱动的音频/惯性传感器耦合定位方法[J]. 测绘学报, 2022, 51(7): 1160-1171. CHEN R Z, QIAN L, NIU X G, et al. Fusing acoustic ranges and inertial sensors using a data and model dual-driven approach[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1160-1171. [6] 高翔, 安辉, 陈为, 等. 移动增强现实可视化综述 [J]. 计算机辅助设计与图形学学报, 2018, 30(1): 1-8. GAO X, AN H, CHEN W, et al. A survey on mobile augmented reality visualization[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(1): 1-8. [7] CHEN L Y, LI S B, BAI Q, et al. Review of image classification algorithms based on convolutional neural networks[J]. Remote Sensing, 2021, 13(22): 4712. [8] XU Y S, ZHANG H Z. Convergence of deep convolutional neural networks[J]. Neural Networks, 2022, 153: 553-563. [9] BOLYA D, ZHOU C, XIAO F, et al. YOLACT++: better real-time instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2): 1108-1121. [10] WU J, YARRAM S, LIANG H, et al. Efficient video instance segmentation via tracklet query and proposal[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 949-958. [11] LI D, LI R, WANG L, et al. You only infer once: cross-modal meta-transfer for referring video object segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 1297-1305. [12] KINI J, SHAH M. Tag-based attention guided bottom-up approach for video instance segmentation[C]//Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR), 2022: 3536-3542. [13] ZHU F, YANG Z, YU X, et al. Instance as identity: a generic online paradigm for video instance segmentation[J]. arXiv:2208.03079, 2022. [14] GANESH P, CHEN Y, YANG Y, et al. YOLO-ReT: towards high accuracy real-time object detection on edge GPUs[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2021: 1311-1321. [15] SHIN A, ISHII M, NARIHIRA T. Perspectives and prospects on Transformer architecture for cross-modal tasks with language and vision[J]. International Journal of Computer Vision, 2022, 130(2): 435-454. [16] YAO H Y, WAN W G, LI X. End-to-end pedestrian trajectory forecasting with Transformer network[J]. ISPRS International Journal of Geo-Information, 2022, 11(1): 44. [17] 田永林, 王雨桐, 王建功, 等. 视觉Transformer研究的关键问题: 现状及展望[J]. 自动化学报, 2022, 48(4): 957-979. TIAN Y L, WANG Y T, WANG J G, et al. Key problems and progress of vision Transformers: the state of the art and prospects[J]. Acta Automatica Sinica, 2022, 48(4): 957-979. [18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017: 6000-6010. [19] WANG Y, XU Z, WANG X, et al. End-to-end video instance segmentation with Transformers[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 8737-8746. [20] ZHOU D, YU Z, XIE E, et al. Understanding the robustness in vision Transformers[J]. arXiv:2204.12451, 2022. [21] WU J, JIANG Y, SUN P, et al. Language as queries for referring video object segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 4964-4974. [22] JIN P, MOU L, XIA G S, et al. Anomaly detection in aerial videos with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13. [23] LI N, TU W, AI H. A sparse feature matching model using a Transformer towards large-view indoor visual localization[J]. Wireless Communications and Mobile Computing, 2022: 1243041. [24] MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision Transformer[J]. arXiv:2110.02178, 2021. [25] HEO B, YUN S, HAN D, et al. Rethinking spatial dimensions of vision Transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 11916-11925. [26] PAN J, BULAT A, TAN F, et al. EdgeViTs: competing light-weight CNNs on mobile devices with vision Transformers[C]//Proceedings of the European Conference on Computer Vision, 2022. [27] CHEN Y, DAI X, CHEN D, et al. Mobile-former: bridging MobileNet and Transformer[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 5260-5269. [28] YANG C, QIAO S, YU Q, et al. MOAT: alternating mobile convolution and attention brings strong vision models[C]//Proceedings of the International Conference on Learning Representations, 2023. [29] TAN M, CHEN B, PANG R, et al. MnasNet: platform-aware neural architecture search for mobile[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 2815-2823. [30] MEHTA S, RASTEGARI M, CASPI A, et al. ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV 2018), Cham, 2018: 561-580. [31] MEHTA S, RASTEGARI M, SHAPIRO L G, et al. ESPNetv2: a light-weight, power efficient, and general purpose convolutional neural network[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 9182-9192. [32] MAAZ M, SHAKER A M, CHOLAKKAL H, et al. EdgeNeXt: efficiently amalgamated CNN-Transformer architecture for mobile vision applications[C]//Proceedings of the European Conference on Computer Vision, 2022. [33] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017. [34] SANDLER M, HOWARD A G, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520. [35] HOWARD A G, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 1314-1324. [36] MEHTA S, RASTEGARI M. Separable self-attention for mobile vision Transformers[J]. arXiv:2206.02680, 2022. [37] MA L. Application of AR in 3D model[C]//Proceedings of the 2021 2nd International Conference on Control, Robotics and Intelligent System, Qingdao, China, 2021: 261-265. [38] ZHOU Y, SUN B, QI Y, et al. Mobile AR/VR in 5G based on convergence of communication and computing[J]. Telecommunications Science, 2018, 34(8): 19-33. [39] LI R P, ZHAO Z F, ZHOU X, et al. Intelligent 5G: when cellular networks meet artificial intelligence[J]. IEEE Wireless Communications, 2017, 24(5): 175-183. [40] GHASEMI Y, JEONG H, CHOI S H, et al. Deep learning-based object detection in augmented reality: a systematic review[J]. Computers in Industry, 2022, 139: 103661. [41] HWANG S, LEE J, KANG S. Enabling product recognition and tracking based on text detection for mobile augmented reality[J]. IEEE Access, 2022, 10: 98769-98782. [42] ZHOU B, GUVEN S. Fine-grained visual recognition in mobile augmented reality for technical support[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(12): 3514-3523. [43] 王巍, 王志强, 赵继军, 等. 基于移动平台的增强现实研究[J]. 计算机科学, 2015, 42(Z11): 510-519. WANG W, WANG Z Q, ZHAO J J, et al. Research of augmented reality based on mobile platform[J]. Computer Science, 2015, 42(Z11): 510-519. [44] LE H, NGUYEN M, YAN W Q, et al. Augmented reality and machine learning incorporation using YOLOv3 and ARKit[J]. Applied Sciences-Basel, 2021, 11(13): 6006. [45] LO VALVO A, CROCE D, GARLISI D, et al. A navigation and augmented reality system for visually impaired people [J]. Sensors, 2021, 21(9): 3061. [46] REAL S, ARAUJO A. VES: a mixed-reality system to assist multisensory spatial perception and cognition for blind and visually impaired people[J]. Applied Sciences-Basel, 2020, 10(2): 523. [47] ZHANG X C, YAO X Y, ZHU Y, et al. An ARCore based user centric assistive navigation system for visually impaired people[J]. Applied Sciences-Basel, 2019, 9(5): 989. [48] VARELAS T, PENTEFOUNDAS A, GEORGIADIS C, et al. An AR indoor positioning system based on anchors[J]. MATTER: International Journal of Science and Technology, 2020, 6: 43-57. [49] LU F, ZHOU H, GUO L, et al. An ARCore-based augmented reality campus navigation system[J]. Applied Sciences, 2021, 11(16): 7515. [50] MARTIN A, CHERIYAN J, GANESH J J, et al. Indoor navigation using augmented reality[J]. EAI Endorsed Transactions on Creative Technologies, 2021: 168718. [51] HUANG B C, HSU J, CHU E T, et al. ARBIN: augmented reality based indoor navigation system[J]. Sensors (Basel, Switzerland), 2020, 20(20): 5890. [52] ZHOU B, GU Z, MA W, et al. Integrated BLE and PDR indoor localization for geo-visualization mobile augmented reality[C]//Proceedings of the 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2020: 1347-1353. [53] MAHAPATRA T, TSIAMITROS N, ROHR A, et al. Pedestrian augmented reality navigator[J]. Sensors, 2023, 23: 1816. [54] SHARIN N A, NOROWI N, ABDULLAH L, et al. GoMap: combining step counting technique with augmented reality for a mobile-based indoor map locator[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2023, 29: 1792. [55] LI X, TIAN Y, ZHANG F, et al. Object detection in the context of mobile augmented reality[C]//Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2020: 156-163. [56] KAUL O, BEHRENS K, ROHS M. Mobile recognition and tracking of objects in the environment through augmented reality and 3D audio cues for people with visual impairments[C]//Proceedings of the CHI Conference on Human Factors in Computing Systems, 2021: 1-7. [57] CHEN J, ZHU Z. Real-time 3D object detection, recognition and presentation using a mobile device for assistive navigation[J]. SN Computer Science, 2023, 4: 543. [58] HSIEH C C, CHEN H M, WANG S K. On-site visual construction management system based on the integration of SLAM-based AR and BIM on a handheld device[J]. KSCE Journal of Civil Engineering, 2023, 27: 4688-4707. [59] VERMA P, AGRAWAL K, SARASVATHI V. Indoor navigation using augmented reality[C]//Proceedings of the 2020 4th International Conference on Virtual and Augmented Reality Simulations, 2020. [60] VERYKOKOU S, BOUTSI A M, IOANNIDIS C. Mobile augmented reality for low-end devices based on planar surface recognition and optimized vertex data rendering[J]. Applied Sciences, 2021, 11(18): 8750. [61] WANG Q, XIE Z. ARIAS: an AR-based interactive advertising system[J]. PLoS One, 2023, 18: e0285838. [62] TSUBOKI Y, KAWAKAMI T, MATSUMOTO S, et al. A real-time background replacement system based on estimated depth for AR applications[J]. Journal of Information Processing, 2023, 31: 758-765. [63] BARUCH G, CHEN Z, DEHGHAN A, et al. ARKitScenes-a diverse real-world dataset for 3D indoor scene understanding using mobile RGB-D data [J]. arXiv:2111.08897, 2021. [64] FEIGL T, PORADA A, STEINER S, et al. Localization limitations of ARCore, ARKit, and hololens in dynamic large-scale industry environments[C]//Proceedings of the 15th International Conference on Computer Graphics Theory and Applications, 2020: 307-318. [65] LIU Z, LAN G, STOJKOVIC J, et al. CollabAR: edge-assisted collaborative image recognition for mobile augmented reality[C]//Proceedings of the 2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), 2020: 301-312. [66] ZHANG W, LIN S, BIJARBOONEH F H, et al. EdgeXAR: a 6-DoF camera multi-target interaction framework for MAR with user-friendly latency compensation[C]//Proceedings of the ACM on Human-Computer Interaction, 2021: 1-24. [67] XIAO Y, AI T, YANG M, et al. A multi-scale representation of point-of-interest (POI) features in indoor map visualization[J]. International Journal of Geo-Information, 2020, 9(4): 239. [68] 李德仁. 论可量测实景影像的概念与应用——从4D产品到5D产品 [J]. 测绘科学, 2007, 32(4): 5-7. LI D R. On concept and application of digital measurable images-from 4D production to 5D production[J]. Science of Surveying and Mapping, 2007, 32(4): 5-7. [69] 朱欣焰, 周成虎, 呙维, 等. 全息位置地图概念内涵及其关键技术初探[J]. 武汉大学学报(信息科学版), 2015, 40(3): 285-295. ZHU X Y, ZHOU C H, GUO W, et al. Preliminary study on conception and key technologies of the location-based pan-information map[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 285-295. [70] 闾国年, 袁林旺, 俞肇元. 地理学视角下测绘地理信息再透视[J]. 测绘学报, 2017, 46(10): 1549-1556. LV G N, YUAN L W, YU Z Y. Surveying and mapping geographical information from the perspective of geography[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1549-1556. [71] ZHU J, WU P, LEI X. IFC-graph for facilitating building information access and query[J]. Automation in Construction, 2023, 148: 104778. [72] LIU L, LI B, ZLATANOVA S, et al. Indoor navigation supported by the industry foundation classes (IFC): a survey [J]. Automation in Construction, 2021, 121: 103436. [73] WEI Z, LI X, HE Z. Semantic urban vegetation modelling based on an extended CityGML description[C]//Proceedings of the 2022 Digital Landscape Architecture Conference, 2022. [74] TANG L, YING S, LI L, et al. An application-driven LOD modeling paradigm for 3D building models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161: 194-207. [75] DIAKITé A, DíAZ-VILARI?O L, BILJECKI F, et al. IFC2INDOORGML: an open-source tool for generating IndoorGML from IFC[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022: 295-301. [76] 罗竟妍. 建筑物实景全息地图模型构建方法研究[D]. 北京: 北京建筑大学, 2021. LUO J Y. Research on the construction method of realistic holographic map model of building[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2021. [77] WANG Q, YE L, YUN L, et al. Pedestrian walking distance estimation based on smartphone mode recognition[J]. Remote Sensing, 2019, 11: 1140. [78] WU Y, CHEN P, GU F, et al. HTrack : an efficient heading-aided map matching for indoor localization and tracking[J]. IEEE Sensors Journal, 2019, 19(8): 3100-3110. [79] JIANHUA L, GUOQIANG F, JINGYAN L, et al. Mobile phone indoor scene features recognition localization method based on semantic constraint of building map location anchor[J]. Open Geosciences, 2022, 14: 1268-1289. [80] 刘建华. 手机室内导航与位置服务[M]. ResearchGate, 2022: 69-79. LIU J H. Mobile indoor navigation and location services[M]. ResearchGate, 2022: 69-79. [81] 于娟, 杨琼, 鲁剑锋, 等. 高级地图匹配算法: 研究现状和趋势[J]. 电子学报, 2021, 49(9): 1818-1829. YU J, YANG Q, LU J F, et al. Advanced map matching algorithms: a survey and trends[J]. Acta Electronica Sinica, 2021, 49(9): 1818-1829. [82] JIANG L, CHEN C, CHEN C. L2MM: learning to map matching with deep models for low-quality GPS trajectory data[J]. ACM Transactions on Knowledge Discovery from Data, 2022, 17: 1-25. [83] 郑诗晨, 盛业华, 吕海洋. 基于粒子滤波的行车轨迹路网匹配方法[J]. 地球信息科学学报, 2020, 22(11): 2109-2117. ZHENG S C, SHENG Y H, LV H Y. Vehicle trajectory-map matching based on particle filter[J]. Journal of Geo-information Science, 2020, 22(11): 2109-2117. [84] OBRADOVIC D, LENZ H, SCHUPFNER M. Fusion of map and sensor data in a modern car navigation system[J]. Journal of VLSI Signal Processing Systems for Signal Image & Video Technology, 2006, 45(1/2): 111-122. [85] 毛江云, 吴昊, 孙未未. 路网空间下基于马尔可夫决策过程的异常车辆轨迹检测算法[J]. 计算机学报, 2018, 41(8): 1928-1942. MAO J Y, WU H, SUN W W. Vehicle trajectory anomaly detection in road network via Markov decision process[J]. Chinese Journal of Computers, 2018, 41(8): 1928-1942. [86] CUI G, BIAN W, WANG X. Hidden Markov map matching based on trajectory segmentation with heading homogeneity[J]. GeoInformatica, 2021, 25(1): 179-206. [87] HARDER D, SHOUSHTARI H, STERNBERG H. Real-time map matching with a backtracking particle filter using geospatial analysis[J]. Sensors (Basel, Switzerland), 2022, 22(9): 3289. [88] GUO G, YAN K, LIU Z, et al. Virtual wireless device-constrained robust extended Kalman filters for smartphone positioning in indoor corridor environment[J]. IEEE Sensors Journal, 2023, 23(3): 2815-2822. [89] FENG J, LI Y, ZHAO K, et al. DeepMM: deep learning based map matching with data augmentation[J]. IEEE Transactions on Mobile Computing, 2022, 21(7): 2372-2384. [90] HONG Y, ZHANG Y, SCHINDLER K, et al. Context-aware multi-head self-attentional neural network model for next location prediction [J]. arXiv:2212.01953, 2022. [91] HONG Y, MARTIN H, RAUBAL M. How do you go where? Improving next location prediction by learning travel mode information using transformers[C]//Proceedings of the 30th International Conference on Advances in Geographic Information Systems, 2022: 1-10. [92] LI Q, CAO R, ZHU J, et al. Learn then match: a fast coarse-to-fine depth image-based indoor localization framework for dark environments via deep learning and keypoint-based geometry alignment[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 169-177. |
[1] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[2] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[3] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[4] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[5] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[6] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[7] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
[8] | JIANG Liang, ZHANG Cheng, WEI Dejian, CAO Hui, DU Yuzheng. Deep Learning in Aided Diagnosis of Osteoporosis [J]. Computer Engineering and Applications, 2024, 60(7): 26-40. |
[9] | HAO Zhifeng, LIU Jun, WEN Wen, CAI Ruichu. Temporal Event Prediction Based on Implicit Relationship of Multiple Sequences [J]. Computer Engineering and Applications, 2024, 60(7): 119-127. |
[10] | YUAN Jing, PAN Su, XIE Hao, XU Wenpeng. Stock Price Prediction Integrating Investor Sentiment Based on S_AM_BiLSTM Model [J]. Computer Engineering and Applications, 2024, 60(7): 274-281. |
[11] | TAN Zhenlin, LIU Ziliang, HUANG Aiquan, CHEN Huihui, ZHONG Yong. Review of Deep Learning Methods for Palm Vein Recognition [J]. Computer Engineering and Applications, 2024, 60(6): 55-67. |
[12] | LAI Jing’an, CHEN Ziqiang, SUN Zongwei, PEI Qingqi. Lightweight Foggy Weather Object Detection Method Based on YOLOv5 [J]. Computer Engineering and Applications, 2024, 60(6): 78-88. |
[13] | RUAN Hui, HUANG Xixia, LI Dengfeng, WANG Le. Research on Fine-Grained Fault Diagnosis of Rolling Bearings [J]. Computer Engineering and Applications, 2024, 60(6): 312-322. |
[14] | SU Chenyang, WU Wenhong, NIU Hengmao, SHI Bao, HAO Xu, WANG Jiamin, GAO Le, WANG Weitai. Review of Deep Learning Approaches for Recognizing Multiple Unsafe Behaviors in Workers [J]. Computer Engineering and Applications, 2024, 60(5): 30-46. |
[15] | Abudukelimu Halidanmu, FENG Ke, SHI Yaqing, Abudukelimu Nihemaiti, Abulizi Abudukelimu. Review of Applications of Deep Learning in Fracture Diagnosis [J]. Computer Engineering and Applications, 2024, 60(5): 47-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||