[1] 刘莎莎, 戴胜. 城市生活垃圾分类政策缘何执行艰难?——基于政策执行过程模型的解释[J]. 干旱区资源与环境, 2022, 36(5): 1-7.
LIU S S, DAI S. Why is it so difficult to implement the policy of househole garbage classification in urban communities? policy implementation process model analysis[J]. Journal of Arid Land Resources and Environment, 2022, 36(5): 1-7.
[2] 贾可心, 马正华, 朱蓉, 等. 注意力机制改进轻量SSD模型的海面小目标检测[J]. 中国图象图形学报, 2022, 27(4): 1161-1175.
JIA K X, MA Z H, ZHU R, et al. Attention-mechanism-based light single shot multibox detector modelling improvement for small object detection on the sea surface[J]. Journal of Image and Graphics, 2022, 27(4): 1161-1175.
[3] SALIMI I, BAYU DEWANTARA B S, et al. Visual-based trash detection and classification system for smart trash bin robot[C]//Proceedings of International Electronics Symposium on Knowledge Creation and Intelligent Computing, Bali, Oct 29-30, 2018. New York: IEEE, 2018: 378-383.
[4] 胡斌, 付浩, 王文斌, 等. 基于红外光谱的城市生活垃圾高值化利用深度分选[J]. 光谱学与光谱分析, 2022, 42(5): 1353-1360.
HU B, FU H, WANG W B, et al. Research on deep sorting approach based on infrared spectroscopy for high value utilization of municipal solid waste[J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1353-1360.
[5] 许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25.
XU D G, WANG L, LI F, et al. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8): 10-25.
[6] PATEL D, PATEL F, PATEL S, at al. Garbage detection using advanced object detection techniques[C]//Proceedings of 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, Mar 25-27, 2021. New York: IEEE, 2021: 526-531.
[7] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430,2021.
[8] 马雯, 于炯, 王潇, 等. 基于改进Faster R-CNN的垃圾检测与分类方法[J]. 计算机工程, 2021, 47(8): 294-300.
MAW, YU J, WANG X, et al. Garbage detection and classification method based on improved Faster R-CNN[J]. Computer Engineering, 2021, 47(8): 294-300.
[9] 耿丽婷, 阿里甫·库尔班, 米娜瓦尔·阿不拉, 等. 改进SSD的可回收垃圾检测方法[J]. 计算机工程与应用, 2022, 58(23): 293-299.
GENG L T, ALIFU K, MINAWAER A, et al. Recyclable garbage detection method of improved SSD[J]. Computer Engineering and Applications, 2022, 58(23): 293-299.
[10] PAN Z. Research on improved Yolo on garbage classification task[C]//Proceedings of 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, Feb 25-27, 2022. New York: IEEE, 2022: 951-953.
[11] WANG C G, ZHOU Y L, LI J J. Lightweight YOLOv4 target detection algorithm fused with ECA mechanism[EB/OL]. (2022-06-29)[2022-10-14]. https://doi.org/10.3390/pr10071285.
[12] ZHAN Y, XU Y P, ZHANG C L, et al. An irregularly dropped garbage detection method based on improved YOLOv5s[C]//Proceedings of the 4th International Symposium on Signal Processing Systems, Xi’an, Mar 25-27, 2022. New York: ACM, 2022: 7-13.
[13] LIN J R, YANG C M, LU Y, et al. An improved Soft-YOLOX for garbage quantity identification[J]. Mathematics, 2022, 10(15): 2650.
[14] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv:2010.11929,2020.
[15] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Infomation Processing Systems, 2017: 5998-6008.
[16] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Oct 10-17, 2021. New York: IEEE, 2021: 9992-10002.
[17] REDMON J, FARHADID A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767,2018.
[18] 江英杰, 宋晓宁. 基于视觉Transformer的双流目标跟踪算法[J]. 计算机工程与应用, 2022, 58(12): 183-190.
JIANG Y J, SONG X N. Dual-stream object tracking algorithm based on vision Transformer[J]. Computer Engineering and Applications, 2022, 58(12): 183-190.
[19] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[J]. arXiv:1703.06211,2017.
[20] ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, Jun 20-25, 2021. Los Alamitos: IEEE, 2021: 8510-8519.
[21] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. arXiv:2101.08158,2021.
[22] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU Loss: faster and better learning for bounding box regression[J]. arXiv:1911.08287,2019.
[23] 魏铖磊, 南新元, 李成荣, 等. 一种具有多尺度感受视野注意力机制的生活垃圾单阶段目标检测方法[J]. 环境工程, 2022, 40(1): 175-183.
WEI C L, NAN X Y, LIC R, et al. A single-stage object detection method for domestic garbage based on multi-scale receptive field attention mechanism[J]. Environmental Engineering, 2022, 40(1): 175-183. |