Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (5): 30-46.DOI: 10.3778/j.issn.1002-8331.2307-0168
• Research Hotspots and Reviews • Previous Articles Next Articles
SU Chenyang, WU Wenhong, NIU Hengmao, SHI Bao, HAO Xu, WANG Jiamin, GAO Le, WANG Weitai
Online:
2024-03-01
Published:
2024-03-01
苏晨阳,武文红,牛恒茂,石宝,郝旭,王嘉敏,高勒,汪维泰
SU Chenyang, WU Wenhong, NIU Hengmao, SHI Bao, HAO Xu, WANG Jiamin, GAO Le, WANG Weitai. Review of Deep Learning Approaches for Recognizing Multiple Unsafe Behaviors in Workers[J]. Computer Engineering and Applications, 2024, 60(5): 30-46.
苏晨阳, 武文红, 牛恒茂, 石宝, 郝旭, 王嘉敏, 高勒, 汪维泰. 深度学习的工人多种不安全行为识别方法综述[J]. 计算机工程与应用, 2024, 60(5): 30-46.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2307-0168
[1] HEINRICH H W. Industrial prevention: a safety management approach[M]. New York: McGraw-Hill, 1980. [2] 王林, 孙礼涛, 翁鸿飞, 等. 一种建筑施工现场不安全行为识别系统: CN212280116U[P]. 2021-01-05. WANG L, SUN L T, WENG H F, et al. A system for identifying unsafe behaviors on construction sites: CN212280116U[P]. 2021-01-05. [3] 卢颖, 吕希凡, 郭良杰, 等. 基于Kinect的地铁乘客不安全行为识别方法与实验[J]. 中国安全生产科学技术, 2021, 17(12): 162-168. LU Y, LYU X F, GUO L J, et al. Kinect-based recognition method and experiments on unsafe behavior of subway passengers[J]. Journal of Safety Science and Technology, 2021, 17(12): 162-168. [4] 杨赛烽. 基于Kinect的罐笼内矿工不安全行为识别方法研究[D]. 徐州: 中国矿业大学, 2019. YANG S F. Research on unsafe behavior recognitionmethod of miners in cage based on Kinect[D]. Xuzhou: China University of Mining and Technology, 2019. [5] 赵江平, 王垚. 基于图像识别技术的不安全行为识别[J]. 安全与环境工程, 2020, 27(1): 158-165. ZHAO J P, WANG Y. Unsafe behavior recognition based on image recognition technology[J]. Safety and Environmental Engineering, 2020, 27(1): 158-165. [6] 刘浩, 刘海滨, 孙宇, 等. 煤矿井下员工不安全行为智能识别系统[J]. 煤炭学报, 2021, 46(S2): 1159-1169. LIU H, LIU H B, SUN Y, et al. Intelligent recognition system of unsafe behavior of underground coal miners[J]. Journal of China Coal Society, 2021, 46(S2): 1159-1169. [7] 王超, 徐楚昕, 董杰, 等. 基于ST-GCN的空中交通管制员不安全行为识别[J]. 中国安全科学学报, 2023, 33(5): 42-48. WANG C, XU C X, DONG J, et al. Unsafe behavior recognition of air traffic controllers based on ST-GCN[J]. China Safety Science Journal, 2023, 33(5): 42-48. [8] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. [9] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448. [10] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [11] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conferenceon Computer Vision, 2017: 2961-2969. [12] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas Nevada, 2016: 779-788. [13] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271. [14] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767,2018. [15] BOCHKOVSKIY A, WANG C Y, LIAO H Y. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004. 10934,2020. [16] WANG C Y, BOCHKOVSKIY A, LIAO H Y. YOLOv7: trainable bag-of-freebies sets new state-of-the-artfor real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475. [17] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, October 11-14, 2016: 21-37. [18] JI S, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(1): 221-231. [19] CARREIRA J, ZISSERMAN A. Quo Vadis, action recognition? a new model and the kinetics dataset[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4724-4733. [20] YAN S, XIONG Y, LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018. [21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [22] SIMONYAN K, ZISSERMAN A. Two-stream convolutionalnetworks for action recognition in videos[C]//Advances in Neural Information Processing Systems, 2014. [23] FEICHTENHOFER C, FAN H, MALIK J, et al. Slowfast networks for video recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6202-6211. [24] 裴利沈, 赵雪专. 群体行为识别深度学习方法研究综[J]. 计算机科学与探索, 2022, 16(4): 775-790. PEI L S, ZHAO X Z. Survey of collective activity recognition based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 775-790. [25] 孙勇. 建筑工人不安全行为智能检测系统研究与设计实现[D]. 深圳: 深圳大学, 2020. SUN Y. Research and design of intelligent detection system for construction workers’ unsafe behavior[D]. Shenzhen: Shenzhen University, 2020. [26] 张博, 宋元斌, 吴冰, 等. 两阶段Faster R-CNN用于施工现场人车碰撞危险自动分析[J]. 制造业自动化, 2022, 44(6): 24-27. ZHANG B, SONG Y B, WU B, et al. Two-stage faster R-CNN for analyzing worker-truck collision hazard[J]. Manufacturing Automation, 2022, 44(6): 24-27. [27] 常捷, 张国维, 陈文江, 等. 基于YOLO-v3算法的加油站不安全行为检测[J]. 中国安全科学学报, 2023, 33(2): 31-37. CHANG J, ZHANG G W, CHEN W J, et al. Gas station unsafe behavior detection based on YOLO-v3 algorithm[J]. China Safety Science Journal, 2023, 33(2): 31-37. [28] 王晨. 面向作业安防的智能检测技术研究与实现[D]. 西安: 西安工业大学, 2022. WANG C. Research and implementation of intelligent detection technology for job security[D]. Xi’an: Xi’an Technological University, 2022. [29] 谢定坤. 模态融合的施工现场工人不安全行为识别方法研究[D]. 武汉: 华中科技大学, 2020. XIE D K. A thesis submitted in partial fulfillment of the requirements for the degree of master of engineering[D]. Wuhan: Huazhong University of Science and Technology, 2020. [30] 范冰倩, 董秉聿, 王彪, 等. 基于深度学习的地铁施工作业人员不安全行为识别与应用[J]. 中国安全科学学报, 2023, 33(1): 41-47. FAN B Q, DONG B Y, WANG B, et al. Identification and application of unsafe behaviors of subway construction workers based on deep learning[J]. China Safety Science Journal, 2023, 33(1): 41-47. [31] 杨鹏, 孟宪兴, 王志泉, 等. 基于计算机视觉的化工企业人员不安全行为自动识别技术研究[J]. 山东化工, 2021, 50(14): 134-135. YANG P, MENG X X, WANG Z Q, et al. Research on Automatic Identification of Unsafe Behavior of Chemical Enterprises Based on Computer Vision[J]. Shandong Chemical Industry, 2021, 50(14): 134-135. [32] 程明皓. 基于改进YOLO算法的加油站监控场景目标检测研究[D]. 大庆: 东北石油大学, 2023. CHENG M H. Research on target detection in gas station monitoring scenarios based on improved yolo algorithm[D]. Daqing: Northeast Petroleum University, 2023. [33] SON H, KIM C. Integrated worker detection and tracking for the safe operation of construction machinery[J]. Automation in Construction, 2021, 126: 103670. [34] 温廷新, 王贵通, 孔祥博, 等. 基于迁移学习与残差网络的矿工不安全行为识别[J]. 中国安全科学学报, 2020, 30(3): 41-46. WEN T X, WANG G T, KONG X B, et al. Identification of miners’ unsafe behaviors based on transfer learning and residual network[J]. China safety sciencejournal, 2020, 30(3): 41-46. [35] 张雷, 冉凌鎛, 代婉婉, 等. 基于融合网络的井下人员行为识别方法[J]. 工矿自动化, 2023, 49(3): 45-52. ZHANG L, RAN L B, DAI W W, et al. Behavior recognition method for underground personnel based on fusion network[J]. Journal of Mine Automation, 2023, 49(3): 45-52. [36] 刘耀, 焦双健. ST-GCN在建筑工人不安全动作识别中的应用[J]. 中国安全科学学报, 2022, 32(4): 30. LIU Y, JIAO S J. Application of ST-GCN in unsafe action identification of construction workers[J]. China Safety Science Journal, 2022, 32(4): 30. [37] KONG T, FANG W, LOVE P E D, et al. Computer vision and long short-term memory: learning to predictunsafe behaviour in construction[J]. Advanced Engineering Informatics, 2021, 50: 101400. [38] 黄珍珍, 肖硕, 王钰, 等. 铁路工人人体行为识别模型[J]. 中国安全科学学报, 2022, 32(6): 17-22. HUANG Z Z, XIAO S, WANG Y, et al. Human activity recognition model of railway workers[J]. China Safety Science Journal, 2022, 32(6): 17-22. [39] DUAN P, GOH Y M, ZHOU J. Personalized stabilitymonitoring based on body postures of construction workers working at heights[J]. Safety Science, 2023, 162: 106104. [40] 饶天荣, 潘涛, 徐会军. 基于交叉注意力机制的煤矿井下不安全行为识别[J]. 工矿自动化, 2022, 48(10): 48-54. RAO T Y, PAN T, XU H J. Unsafe action recognition in underground coal mine based on cross-attention mechanism[J]. Journal of Mine Automation, 2022, 48(10): 48-54. [41] LEE B, HONG S, KIM H. Determination of workers’ compliance to safety regulations using a spatio-temporal graph convolution network[J]. Advanced Engineering Informatics, 2023, 56: 101942. [42] 高治军, 顾巧瑜, 陈平, 等. 基于CNN-LSTM双流融合网络的危险行为识别[J]. 数据采集与处理, 2023, 38(1): 132-140. GAO Z J, GU Q Y, CHEN P, et al. Dangerous behavior recognition based on cnn-lstm dual-stream fusion network[J]. Journal of Data Acquisition and Processing, 2023, 38(1): 132-140. [43] 苏洪超. 工业环境中人员不安全行为识别研究[D]. 大连: 海事大学, 2021. SU H C. On identification of human unsafe behavior in industrial environment[D]. Dalian: Dalian Maritime University, 2021. [44] 郁润. 基于计算机视觉的施工现场工人不安全行为识别方法研究[D]. 北京: 清华大学, 2019. YU R. Computer-vision-based method for the recognition of construction workers’ unsafe behaviors[D]. Beijing: Tsinghua University, 2019. [45] 张萌. 基于深度学习的脚手架高空作业险态智能识别方法研究[D]. 镇江: 江苏大学, 2022. ZHANG M. Research on intelligent identification method of dangerous state of scaffold high-altitude operation based on deep learning[D]. Zhenjiang: Jiangsu University, 2022. [46] 孟维, 王计斌, 魏东迎. 基于深度学习的人体行为识别方法研究[J]. 江苏通信, 2022, 38(4): 112-116. MENG W, WANG J B, WEI D Y. Research on human behavior recognition method based on deep learning[J]. Jiangsu Communication, 2022, 38(4): 112-116. [47] 何赟泽, 周辉, 吴兴辉, 等. 面向水域人员的不安全行为识别算法与应用[J]. 中国测试, 2023(10): 104-110. HE Y Z, ZHOU H, WU X H, et al. Unsafe behavior recognition algorithm and application for water personnel[J]. China Measurement & Test, 2023(10): 104-110. [48] ZHANG X, SU X, YU J, et al. Combine object detection with skeleton-based action recognition to detect Smoking Behavior[C]//Proceedings of the 2021 The 5th International Conference on Video and Image Processing, 2021: 111-116. [49] 徐达炜. 基于注意力和人体关键点的井下矿工不安全行为识别算法研究[D]. 徐州: 中国矿业大学, 2021. XU D W. Research on unsafe behavior recognition method based on attention and key points of miners[D]. Xuzhou: China University of Mining and Technology, 2021. [50] 吴晨. 电力作业场景下异常人体行为识别的研究[D]. 无锡: 江南大学, 2022. WU C. Research on abnormal human behavior recognition in electric power operation[D]. Wuxi: Jiangnan University, 2022. [51] 李雯静, 刘鑫. 基于深度学习的井下人员不安全行为识别与预警系统研究[J]. 金属矿山, 2023(3): 177-184. LI W J, LIU X. Research on underground personnel unsafe behavior identification and early warning system based on deep learning[J]. Metal Mine, 2023(3): 177-184. [52] 毛晓东. 基于目标检测与动作识别算法的电梯危险行为监测[J]. 机械设计与制造, 2023(11): 144-148. MAO X D. Elevator dangerous behavior monitoring based on object detection and action recognition algorithm[J]. Machinery Design & Manufacture, 2023(11): 144-148. [53] 万子伦. 基于改进Faster-RCNN的多尺度人脸口罩检测算法研究[D]. 郑州: 河南大学, 2022. WAN Z L. Research on multi-scale face mask detection algorithm based on improved Faster R-CNN[D]. Zhengzhou: Henan University, 2022. [54] 吴海波. 复杂背景下红外目标检测的深度学习方法[D]. 西安: 西安工业大学, 2023. WU H B. Deep learning methods of infrared target detection in complex background[D]. Xi’an: Northwestern Polytechnical University, 2023. [55] 王永归. 基于计算机视觉的智能建造中3D目标检测研究[D]. 西安: 陕西科技大学, 2023. WANG Y G. Research on 3D object detection in intelligent construction based on computer vision[D]. Xi’an: Shaanxi University of Science & Technology, 2023. [56] 贺艺斌, 田圣哲, 兰贵龙. 基于改进Faster-RCNN算法的行人检测[J]. 汽车实用技术, 2022, 47(5): 34-37. HE Y B, TIAN S Z, LAN G L. Pedestrian detection based on improved FASTER-RCNN algorithm[J]. Automobile Applied Technology, 2022, 47(5): 34-37. [57] 王小玉. 基于改进Faster-RCNN行人检测算法的研究[D]. 哈尔滨: 哈尔滨理工大学, 2022. WANG X Y. Research on pedestrian detection algorithm based on improved faster-rcnn[D]. Harbin: Harbin University of Science and Technology, 2022. [58] 赵留阳. 基于知识蒸馏的轻量化Faster-RCNN算法研究[D]. 淮南: 安徽理工大学, 2022. ZHAO L Y. Research on lightweight faster-rcnn algorithm based on knowledge distillation[D]. Huainan: Anhui University of Science and Technology, 2022. [59] 过铭涛. 基于改进YOLOv3的目标检测模型研究与应用[D]. 南京: 南京邮电大学, 2022. GUO M T. Research and application of target detection model based on improved yolov3[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022. [60] 曹梓铭. 基于YOLOv4的多场景小目标检测[D]. 南京: 南京邮电大学, 2022. CAO Z M. Multi-scene small object detection via yolov4[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022. [61] 晏天文. 基于深度学习的小物体目标检测算法研究[D]. 南京: 南京邮电大学, 2022. YAN T W. Research on small object detection algorithmbased on deep learning[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022. [62] 余海坤. 资源受限下目标检测网络轻量化方法研究[D]. 西安: 西安工业大学, 2023. YU H K. Research on object detection network lightweight method with constrained resources[D]. Xi’an: Xi’an Technological University, 2023. [63] 贾世娜. 基于改进YOLOv5的小目标检测算法研究[D]. 南昌: 南昌大学, 2022. JIA S N. Research on small target detection algorithm based on improved yolov5[D]. Nanchang: Nanchang University, 2022. [64] 贾君霞, 史珂鑫. 改进型SSD道路行人目标检测算法[J]. 国外电子测量技术, 2022, 41(12): 26-32. JIA J X, SHI K X. Improved pedestrian target detection algorithm for ssd roads[J]. Foreign Electronic Measurement Technology, 2022, 41(12): 26-32. [65] 金磊. 基于多尺度注意力机制的人体行为识别方法研究[D]. 西安: 西安电子科技大学, 2022. JIN L. Research on human action recognition with multi-scale attention mechanism[D]. Xi’an: Xidian University, 2022. [66] 陈泯融, 彭俊杰, 曾国强. 基于多流融合网络的3D骨架人体行为识别[J]. 华南师范大学学报(自然科学版), 2023, 55(1): 94-101. CHEN M R, PENG J J, ZENG G Q. 3D skeleton-based human action recognition based on multi-stream fusion network[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 94-101. [67] 申军轶. 基于3D卷积的人体动态异常行为识别[D]. 包头: 内蒙古科技大学, 2022. SHEN J Y. Recognition of human dynamic abnormal behaviorbased on 3D convolution[D]. Baotou: Inner Mongolia University of Science and Technology, 2022. [68] 高闻. 基于轻量级神经网络的人体行为识别方法研究[D]. 太原: 太原理工大学, 2022. GAO W. Research on human action recognition method based on lightweight neural network[D]. Taiyuan: Taiyuan University of Technology, 2022. [69] 吴松平. 融合时间序列与空间特征的视频人体行为识别研究[D]. 贵阳: 贵州大学, 2022. WU S P. Research on video human behavior recognition by fusing time series and spatial features[D]. Guiyang: Guizhou University, 2022. [70] 余金锁, 卢先领. 基于分割注意力的特征融合CNN-BiLSTM人体行为识别算法[J]. 电子测量与仪器学报, 2022, 36(2): 89-95. YU J S, LU X L. Human action recognition algorithm of feature fusion CNN-BiLSTM based[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(2): 89-95. [71] 闫雨寒, 陈天, 刘忠育, 等. 基于双重注意力和3DResNet-BiLSTM行为识别方法[J]. 计算机应用与软件, 2023, 40(2): 192-196. YAN Y H, CHEN T, LIU Z Y, et al. Action recognitionmethod based on double attention and 3d resnet-bilstm[J]. Computer Applications and Software, 2023, 40(2): 192-196. [72] 程昱昊. 基于轻量型神经网络的矿工不安全行为识别算法研究[D]. 徐州: 中国矿业大学, 2022. CHENG Y H. Research on miners' unsafe behavior recognition algorithm based on lightweight neural network[D]. Xuzhou: China University of Mining and Technology, 2022. [73] 龚苏明, 陈莹. 时空特征金字塔模块下的视频行为识别[J]. 计算机科学与探索, 2022, 16(9): 2061-2067. GONG S M, CHEN Y. Video action recognition based on spatio-temporal feature pyramid module[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2061-2067. [74] 孙琪翔, 何宁, 张聪聪, 等. 基于轻量级图卷积的人体骨架动作识别方法[J]. 计算机工程, 2022, 48(5): 306-313. SUN Q X, HE N, ZHANG C C, et al. Human skeleton action recognition method based on lightweight graph convolution[J]. Computer Engineering, 2022, 48(5): 306-313. [75] 蒋俊蕊, 魏延, 王晶仪, 等. 基于人体时空骨架特征的图卷积行为识别算法[J]. 重庆师范大学学报 (自然科学版), 2022, 39(4): 124-133. JIANG J R, WEI Y, WANG J Y, et al. Graph convolutional behavior recognition algorithm based on human spatio-temporal skeletal features[J]. Journalof Chongqing Normal University (Natural Science), 2022, 39(4): 124-133. [76] 王宪伦, 王广宇, 孙宇轩. 基于双流图卷积网络的人体行为识别算法[J]. 传感器与微系统, 2023, 42(7): 140-143. WANG X L, WANG G Y, SUN Y X. Human behavior recognition algorithm based on two-stream gcn[J]. Transducer and Microsystem Technologies, 2023, 42(7): 140-143. [77] 李昊朋. 基于机器视觉的工厂人员行为识别研究[D]. 西安: 西安工业大学, 2023. LI H P. Research on behavior recognition of factory personnel based on machine vision[D]. Xi’an: Xi’an Technological University, 2023. [78] 毛臻臻. 基于时空特征的行为识别[D]. 无锡: 江南大学, 2022. MAO Z Z. Action recognition based on spatio-temporal features[D]. Wuxi: Jiangnan University, 2022. [79] 张仁路, 高丙朋. 基于时序时空双流卷积的异常行为识别[J]. 现代电子技术, 2023, 46(3): 81-87. ZHANF R L. GAO B P. Abnormal behavior recognitionbased on time?series spatiotemporal two-stream convolution[J]. Modern Electronics Technique, 2023, 46(3): 81-87. [80] 屈文谦. 电网施工现场运动目标检测与不安全行为识别研究[D]. 南昌: 南昌大学, 2022. QU W Q. Research on motion target detection and unsafe behavior recognition in power grid construction site[D]. Nanchang: Nanchang University, 2022. [81] 刘斌, 贾浩强, 杨一, 等. 基于改进OpenPose算法的矿工危险行为识别研究[J]. 电视技术, 2023, 47(2): 20-23. LIU B, JIA H Q, YANG Y, et al. Research on miners’ dangerous behavior recognition based on improved openpose algorithm[J]. Video Engineering, 2023, 47(2): 20-23. [82] LI L, ZHANG P, YANG S, et al. YOLOv5-sfe: an algorithm fusing spatio-temporal features for detecting and recognizing workers’ operating behaviors[J]. Advanced Engineering Informatics, 2023, 56: 101988. [83] 刘艺超, 唐哲, 方汀, 等. 基于改进YOLOv5算法的现场不安全行为识别方法研究[J]. 科学技术创新, 2023(8): 5-8. LIU Y C, TANG Z, FANG T, et al. Research on unsafe behavior recognition method based on improved YOLOv5 algorithm[J]. Scientific and Technologicalinnovation Information, 2023(8): 5-8. [84] 余益鸿, 周传德, 孟明辉, 等. 基于改进YOLOv5算法的升降机人员不安全行为识别方法[J]. 重庆科技学院学报 (自然科学版), 2022, 24(2): 79-83. YU Y H, ZHOU C D, MENG M H, et al. Unsafe behavior recognition method of lift personnel based on improved YOLOv5 algorithm[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2022, 24(2): 79-83. [85] 杜俊凤. 基于计算机视觉的建筑工人临边作业不安全行为识别研究[D]. 成都: 四川师范大学, 2021. DU J F. Unsafe behavior recognition of construction workers workingon the edge of buildings based on computer vision[D]. Chengdu: Sichuan Normal University, 2021. [86] 马莉, 王卓, 代新冠, 等. 基于双流 CNN 与 Bi-LSTM的施工人员不安全行为轻量级识别模型[J]. 西安科技大学学报, 2022, 42(04): 809-817. MA L, WANG Z, DAI X G, et al. Lightweight unsafe behavior recognition model of construction workers based on two-stream CNN and Bi-LSTM[J]. Journal of Xi’an University of Science and Technology, 2022, 42(4): 809-817. [87] 赖永倩. 基于视频的井场工人违规行为识别算法研究[D]. 大庆: 东北石油大学, 2023. LAI Y Q. Research on video based recognition algorithm for violation behavior of well site workers[D]. Daqing: Northeast Petroleum University, 2023. [88] 张社荣, 梁斌杰, 马重刚, 等. 水利工程施工人员不安全行为识别方法[J]. 水力发电学报, 2023(8): 98-109. ZHANG S R, LIANG B J, MA Z G, et al. Unsafe behavior recognition method of construction workers inwater conservancy project[J]. Journal of Hydroelectric Engineering, 2023(8): 98-109. [89] CAO X, ZHANG C, WANG P, et al. Unsafe mining behavior identification method based on an improved st-gcn[J]. Sustainability, 2023, 15(2): 1041. [90] 朱国庆. 基于深度学习的人员不安全行为识别研究[D]. 大连: 大连海事大学, 2022. ZHU G Q. Personnel unsafe behavior identification based on deep learning[D]. Dalian: Dalian Maritime University, 2022. [91] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher flops for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition, 2023: 12021-12031. |
[1] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[2] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[3] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[4] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[5] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[6] | TIAN Peng, MAO Li. Improved YOLOv8 Object Detection Algorithm for Traffic Sign Target [J]. Computer Engineering and Applications, 2024, 60(8): 202-212. |
[7] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[8] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
[9] | JIANG Liang, ZHANG Cheng, WEI Dejian, CAO Hui, DU Yuzheng. Deep Learning in Aided Diagnosis of Osteoporosis [J]. Computer Engineering and Applications, 2024, 60(7): 26-40. |
[10] | LIU Jianhua, WANG Nan, BAI Mingchen. Progress of Instantiated Reality Augmentation Method for Smart Phone Indoor Scene Elements [J]. Computer Engineering and Applications, 2024, 60(7): 58-69. |
[11] | HAO Zhifeng, LIU Jun, WEN Wen, CAI Ruichu. Temporal Event Prediction Based on Implicit Relationship of Multiple Sequences [J]. Computer Engineering and Applications, 2024, 60(7): 119-127. |
[12] | ZHAO Xin, CHEN Lili, YANG Weichuan, ZHANG Chengwang. DY-YOLOv5:Target Detection for Aerial Image Based on Multiple Attention [J]. Computer Engineering and Applications, 2024, 60(7): 183-191. |
[13] | YUAN Jing, PAN Su, XIE Hao, XU Wenpeng. Stock Price Prediction Integrating Investor Sentiment Based on S_AM_BiLSTM Model [J]. Computer Engineering and Applications, 2024, 60(7): 274-281. |
[14] | TAN Zhenlin, LIU Ziliang, HUANG Aiquan, CHEN Huihui, ZHONG Yong. Review of Deep Learning Methods for Palm Vein Recognition [J]. Computer Engineering and Applications, 2024, 60(6): 55-67. |
[15] | LAI Jing’an, CHEN Ziqiang, SUN Zongwei, PEI Qingqi. Lightweight Foggy Weather Object Detection Method Based on YOLOv5 [J]. Computer Engineering and Applications, 2024, 60(6): 78-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||