[1] YEN H N, SYU M J. Inspection of polarizer tiny bump defects using computer vision[C]//2015 IEEE International Conference on Consumer Electronics (ICCE), 2015: 525-527.
[2] 赖文威. 偏光片外观缺陷成像机理与检测技术研究[D]. 深圳: 深圳大学, 2017.
LAI W W. Research on the imaging mechanism and detection technology of polarizer appearance defects[D]. Shenzhen: Shenzhen University, 2017.
[3] LIU R, SUN Z, WANG A, et al. Real-time defect detection network for polarizer based on deep learning[J]. Journal of Intelligent Manufacturing, 2020, 31(8): 1813-1823.
[4] 李春霖, 谢刚, 王银, 等. 基于YOLOv3-Tiny-D算法的偏光片缺陷检测[J]. 计算机集成制造系统, 2022, 28(3): 787-797.
LI C L, XIE G, WANG Y, et al. Defect detection of polarizer based on YOLOV3-Tiny-D algorithm[J]. Computer Integrated Manufacturing Systems, 2022, 28(3): 787-797.
[5] 夏禹, 肖金球, 翁玉尚. 基于改进Faster-RCNN的偏光片表面缺陷检测[J]. 光学技术, 2021, 47(6): 695-702.
XIA Y, XIAO J Q, WENG Y S. Surface defect detection of polarizer based on improved Faster-RCNN[J]. Optical Technique, 2021, 47(6): 695-702.
[6] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[7] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[8] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[9] PANG J, CHEN K, SHI J, et al. Libra R-CNN: towards balanced learning for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 821-830.
[10] MISRA D. Mish: a self regularized non-monotonic neural activation function[J]. arXiv:1908.08681, 2019.
[11] 王颖颖. 基于改进深度残差网络的小目标检测与跟踪研究[D]. 北京: 北京化工大学, 2021.
WANG Y Y. Research on small target detection and tracking based on improved deep residual network[D]. Beijing: Beijing University of Chemical Technology, 2021.
[12] ZHANG H, CISSE M, DAUPHIN Y N, et al. mixup: beyond empirical risk minimization[J]. arXiv:1710.09412, 2017.
[13] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//28th International Conference on Neural Information Processing Systems, 2015: 91-99.
[14] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[15] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[16] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[17] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 734-750.
[18] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636.
[19] ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9759-9768.
[20] ZHANG H, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8514-8523.
[21] FENG C, ZHONG Y, GAO Y, et al. Tood: task-aligned one-stage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 3490-3499.
[22] DUAN K, BAI S, XIE L, et al. CenterNet++ for object detection[J]. arXiv:2204.08394, 2022. |