LI Daoquan, LI Yuxiu , REN Dayong. Malicious Traffic Detection Method Based on Decision Tree-SNN Under Small Sample[J]. Computer Engineering and Applications, 2023, 59(21): 258-266.
[1] ZAINAL A,MAAROR M A.Ensemble classifiers for net-work intrusion detection system[J].International Journal of Information Security,2009,4(3):217-225.
[2] AKBANOV M.The case of WannaCry[J].Computers & Electrical Engineering,2019,76:111-121.
[3] XU Y,LIU Y.DDoS attack detection under SDN context[C]//The 35th Annual IEEE International Conference on Computer Communications,2016:1-9.
[4] AHMAD Z,SHAHID KHAN A.Network intrusion detection system:a systematic study of machine learning and deep learning approaches[J].Transactions on Emerging Telecom-munications Technologies,2021,32(1):e4150.
[5] 赵凯琳,靳小龙,王元卓.小样本学习研究综述[J].软件学报,2021,32(2):349-369.
ZHAO K L,JIN X L,WANG Y Z.Survey on few-shot learning[J].Journal of Software,2021,32(2):349-369.
[6] BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32.
[7] LECUN Y,BENGIO Y.Deep learning[J].Nature,2015,521(7553):436-444.
[8] CHOWDHURY M M U,HAMMOND F,KONOWICZ G,et al.A few-shot deep learning approach for improved intrusion detection[C]//2017 IEEE 8th Annual Ubiquitous Computing,Electronics and Mobile Communication Conference(UEMCON),2017:456-462.
[9] 吴春琼.基于特征选择的网络入侵检测模型[J].计算机仿真,2012,29(6):136-139.
WU C Q.Network intrusion detection model based on feature selection[J].Computer Simulation,2012,29(6):136-139.
[10] 张春艳,倪世宏,张鹏.基于多层聚类的多分类SVM快速学习方法[J].计算机工程与设计,2017,38(2):522-527.
ZHANG C Y,NI S H,ZHANG P.Multi-classification SVM multi-clustering fast learning method[J].Computer Engineering and Design,2017,38(2):522-527.
[11] CHICCO D.Siamese neural networks:an overview[J]. Artificial Neural Networks,2021,2190:73-94.
[12] XU C,SHEN J,DU X.A method of few-shot network intrusion detection based on meta-learning framework[J].IEEE Transactions on Information Forensics and Security,2020,15:3540-3552.
[13] YU Y,BIAN N.An intrusion detection method using few-shot learning[J].IEEE Access,2020,8:49730-49740.
[14] HE M,WANG X,ZHOU J,et al.Deep-feature-based autoencoder network for few-shot malicious traffic detection[J].Security and Communication Networks,2021,2021:6659022.
[15] YE T,LI G,AHMAD I,et al.FLAG:few-shot latent dirichlet generative learning for semantic-aware traffic detection[J].IEEE Transactions on Network and Service Management,2021,19(1):73-88.
[16] 高浩寒,潮群.小样本下基于孪生神经网络的柱塞泵故障诊断[J].北京航空航天大学学报,2023,49(1):155-164.
GAO H H,CHAO Q.Piston pump fault diagnosis based on siamese neural network with small samples[J].Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):155-164.
[17] QUINLAN J R.Induction on decision tree[J].Machine Learning,1986,1(1):81-106.
[18] KOCH G,ZEMEL R,SALAKHUTDINOV R.Siamese neural networks for one-shot image recognition[C]//International Conference on Machine Learning Deep Learning Workshop,2015:2-17.
[19] CHEN X,YAN X,ZHENG F,et al.One-shot adversarial attacks on visual tracking with dual attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10176-10185.
[20] 张宸嘉,朱磊,俞璐.卷积神经网络中的注意力机制综述[J].计算机工程与应用,2021,57(20):64-72.
ZHANG C J,ZHU L,YU L.Review of attention mechanism in convolutional neural networks[J].Computer Engineering and Applications,2021,57(20):64-72.
[21] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[22] TAVALLAEE M,BAGHERI E,LU W,et al.A detailed analysis of the KDD CUP 99 data set[C]//2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications,2009:1-6.
[23] MOUSTAFA N.UNSW-NB15:a comprehensive data set for network intrusion detection systems(UNSW-NB15 network data set)[C]//2015 Military Communications and Information Systems Conference(MilCIS),2015:1-6.