[1] BOYDSTON R A, WILLIAMS M M. Sweet corn hybrid tolerance to weed competition under three weed management levels[J]. Renewable Agriculture and Food Systems, 2016, 31(4): 281-287.
[2] TURSUN N, DATTA A, SAKINMAZ M S, et al. The critical period for weed control in three corn (Zea mays L.) types[J]. Crop Protection, 2016, 90: 59-65.
[3] HUSSAIN Z, MARWAT K B, CARDINA J, et al. Xanthium strumarium L. impact on corn yield and yield components[J]. Turkish Journal of Agriculture and Forestry, 2014, 38(1): 39-46.
[4] 王广祥, 王曌, 王宏波, 等. 吉林省春玉米田杂草防控现状及除草剂减量控害应用技术研究[J]. 东北农业科学, 2020, 45(5): 47-49.
WANG G X, WANG Z, WANG H B, et al. Current weed control and application technology of herbicide reduction in spring maize field in Jilin Province[J]. Journal of Northeast Agricultural Sciences, 2020, 45(5): 47-49.
[5] PIASECKI C, OVEJERO R F L, PICOLI JUNIOR G J, et al. Control of Italian ryegrass and Alexandergrass in corn using different corn sowing date, pre- and post-emergent herbicides[J]. Bragantia, 2020, 79(3): 387-398.
[6] QUAN L, FENG H, LV Y, et al. Maize seedling detection under different growth stages and complex field environments based on an improved faster R-CNN[J]. Biosystems Engineering, 2019, 184(1): 1-23.
[7] 傅雷扬, 李绍稳, 张乐, 等. 田间除草机器人研究进展综述[J]. 机器人, 2021, 43(6): 751-768.
FU L Y, LI S W, ZHANG L, et al. Review on research progress of weeding Robot in the field[J]. Robot, 2021, 43(6): 751-768.
[8] KANAGASINGHAM S, EKPANYAPONG M, CHAIHAN R. Integrating machine vision-based row guidance with GPS and compass-based routing to achieve autonomous navigation for a rice field weeding robot[J]. Precision Agriculture, 2020, 21(4): 831-855.
[9] AKBARZADEH S, PAAP A, AHDEROM S, et al. Plant discrimination by support vector machine classifier based on spectral reflectance[J]. Computers and Electronics in Agriculture, 2018, 148: 250-258.
[10] 张春龙, 黄小龙, 耿长兴, 等. 智能锄草机器人系统设计与仿真[J]. 农业机械学报, 2011, 42(7): 196-199.
ZHANG C L, HUANG X L, GENG C X, et al. Design and simulation of intelligent weeding robot system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(7): 196-199.
[11] BAWDEN O, KULK J, RUSSELL R, et al. Robot for weed species plant-specific management[J]. Journal of Field Robotics, 2017, 34(6): 1179-1199.
[12] WANG A C, ZHANG W, WEI X H. A review on weed detection using ground-based machine vision and image processing techniques[J]. Computers and Electronics in Agriculture, 2019, 158: 226-240.
[13] WU Z N, CHEN Y J, ZHAO B, et al. Review of weed detection methods based on computer vision[J]. Sensors, 2021, 21(11): 3647.
[14] KHAN S, TUKFAIL M, KHAN M T, et al. Deep learning-based identification system of weeds and crops in strawberry and pea fields for a precision agriculture sprayer[J]. Precision Agriculture, 2021, 22(6): 1711-1727.
[15] CHECHLINSKI L, SIEMIATKOWSKA B, MAJEWSKI M. A system for weeds and crops identification-reaching over 10 FPS on raspberry pi with the usage of MobileNets, DenseNet and custom modifications[J]. Sensors, 2019, 19(17): 3787.
[16] 颜秉忠. 机器视觉技术在玉米苗期杂草识别中的应用[J]. 农机化研究, 2018, 40(3): 212-216.
YAN B Z. Application of machine vision technology in weed identification at seedling stage of maize[J]. Journal of Agricultural Mechanization Research, 2018, 40(3): 212-216.
[17] WANG X S, ZHANG H H, CHEN Y. Research on maize canopy center recognition based on nonsignificant color difference segmentation[J]. Plos One, 2018, 13(9): 0202366.
[18] 姜红花, 张传银, 张昭, 等. 基于Mask R-CNN的玉米田间杂草检测方法[J]. 农业机械学报, 2020, 51(6): 220-228.
JIANG H H, ZHANG C Y, ZHANG Z, et al. A method of weed detection in maize field based on Mask R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 220-228.
[19] ETIENNE A, AHMAD A, AGGARWAL V, et al. Deep learning-based object detection system for identifying weeds using UAS imagery[J]. Remote Sensing, 2021, 13(24): 5182.
[20] CHECHLINSKI L, SIEMIATKOWSKA B, MAJEWSKI M. A system for weeds and crops identification-reaching over 10 FPS on raspberry pi with the usage of MobileNets, DenseNet and custom modifications[J]. Sensors, 2019: 19173787.
[21] WONG A, FAMUORI M, SHAFIEE M J, et al. YOLO Nano: a highly compact you only look once convolutional neural network for object detection[J]. arXiv:1910.01271, 2019.
[22] 张啸. 基于嵌入式平台的杂草识别与空间定位方法研究及实现[D]. 哈尔滨: 哈尔滨工业大学, 2021.
ZHANG X. Research and implementation of weed identification and spatial localization method based on embedded platform[D]. Harbin: Harbin Institute of Technology, 2021.
[23] HAN K, WANG Y, XU C, et al. GhostNets on heterogeneous devices via cheap opertions[J]. International Journal of Computer Vision, 2022, 130(4): 1050-1069.
[24] DU F J, JIAO S J. Improvement of lightweight convolutional neural network model based on YOLO algorithm and its research in pavement defect detection[J]. Sensors, 2022, 22(9): 3537.
[25] ENVELOPE F J A P, JAS B, ANM C, et al. Detection of mold on the food surface using YOLOv5[J]. Current Research in Food Science, 2021, 4: 724-728.
[26] 卓天天, 桑庆兵. 注意力机制与复合卷积在手写识别中的应用[J]. 计算机科学与探索, 2022, 16(4): 888-897.
ZHUO T T, SANG Q B. Application of attention mechanism and composite convolution in handwriting recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 888-897.
[27] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391. |