[1] HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C]//International Conference on Machine Learning, 2015: 597-606.
[2] HOU Q, JIANG P T, WEI Y, et al. Self-erasing network for integral object attention[C]//Advances in Neural Information Processing Systems, 2018, 31: 547-557.
[3] YAN P, LI G, XIE Y, et al. Semi-supervised video salient object detection using pseudo-labels[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 7284-7293.
[4] LIU G, FAN D. A model of visual attention for natural image retrieval[C]//2013 International Conference on Information Science and Cloud Computing Companion, 2013: 728-733.
[5] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[6] YANG Z, SOLTANIAN-ZADEH S, FARSIU S. BiconNet: an edge-preserved connectivity-based approach for salient object detection[J]. Pattern Recognition, 2022, 121: 108231.
[7] XIE C, XIA C, MA M, et al. Pyramid grafting network for one-stage high resolution saliency detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11717-11726.
[8] SUN P, ZHANG W, WANG H, et al. Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 1407-1417.
[9] WANG F, PAN J, XU S, et al. Learning discriminative cross-modality features for RGB-D saliency detection[J]. IEEE Transactions on Image Processing, 2022, 31: 1285-1297.
[10] JI W, LI J, YU S, et al. Calibrated RGB-D salient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9471-9481.
[11] ZHANG W, JI G P, WANG Z, et al. Depth quality-inspired feature manipulation for efficient RGB-D salient object detection[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 731-740.
[12] ZHANG H, LEI J, FAN X, et al. Depth combined saliency detection based on region contrast model[C]//2012 7th International Conference on Computer Science & Education (ICCSE), 2012: 763-766.
[13] SONG H, LIU Z, DU H, et al. Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4204-4216.
[14] REN J, GONG X, YU L, et al. Exploiting global priors for RGB-D saliency detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2015: 25-32.
[15] ZHANG M, REN W, PIAO Y, et al. Select, supplement and focus for RGB-D saliency detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3472-3481.
[16] PANG Y, ZHANG L, ZHAO X, et al. Hierarchical dynamic filtering network for RGB-D salient object detection[C]//European Conference on Computer Vision. Cham: Springer, 2020: 235-252.
[17] ZHANG Z, LIN Z, XU J, et al. Bilateral attention network for RGB-D salient object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 1949-1961.
[18] LIU N, ZHANG N, HAN J. Learning selective self-mutual attention for RGB-D saliency detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 13756-13765.
[19] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[21] DE BOER P T, KROESE D P, MANNOR S, et al. A tutorial on the cross-entropy method[J]. Annals of Operations Research, 2005, 134(1): 19-67.
[22] MáTTYUS G, LUO W, URTASUN R. DeepRoadMapper: extracting road topology from aerial images[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 3438-3446.
[23] PENG H, LI B, XIONG W, et al. RGBD salient object detection: a benchmark and algorithms[C]//European Conference on Computer Vision. Cham: Springer, 2014: 92-109.
[24] FAN D P, LIN Z, ZHANG Z, et al. Rethinking RGB-D salient object detection: models, data sets, and large-scale benchmarks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(5): 2075-2089.
[25] JU R, GE L, GENG W, et al. Depth saliency based on anisotropic center-surround difference[C]//2014 IEEE International Conference on Image Processing (ICIP), 2014: 1115-1119.
[26] CHENG Y, FU H, WEI X, et al. Depth enhanced saliency detection method[C]//Proceedings of International Conference on Internet Multimedia Computing and Service, 2014: 23-27.
[27] NIU Y, GENG Y, LI X, et al. Leveraging stereopsis for saliency analysis[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012: 454-461.
[28] ARBELAEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(5): 898-916.
[29] GUO J, REN T, BEI J. Salient object detection for RGB-D image via saliency evolution[C]//2016 IEEE International Conference on Multimedia and Expo (ICME), 2016: 1-6.
[30] CHEN T, HU X, XIAO J, et al. CFIDNet: cascaded feature interaction decoder for RGB-D salient object detection[J]. Neural Computing and Applications, 2022, 34(10): 7547-7563.
[31] JIANG B, ZHOU Z, WANG X, et al. CmSalGAN: RGB-D salient object detection with cross-view generative adversarial networks[J]. IEEE Transactions on Multimedia, 2020, 23: 1343-1353.
[32] JI W, LI J, ZHANG M, et al. Accurate RGB-D salient object detection via collaborative learning[C]//European Conference on Computer Vision. Cham: Springer, 2020: 52-69.
[33] LI C, CONG R, KWONG S, et al. ASIF-Net: attention steered interweave fusion network for RGB-D salient object detection[J]. IEEE Transactions on Cybernetics, 2020, 51(1): 88-100.
[34] CHEN H, DENG Y, LI Y, et al. RGBD salient object detection via disentangled cross-modal fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 8407-8416.
[35] LIU Z, TANG J, XIANG Q, et al. Salient object detection for RGB-D images by generative adversarial network[J]. Multimedia Tools and Applications, 2020, 79(35): 25403-25425.
[36] WU Y H, LIU Y, XU J, et al. MobileSal: extremely efficient RGB-D salient object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(12): 10261-10269.
[37] LI J, JI W, BI Q, et al. Joint semantic mining for weakly supervised RGB-D salient object detection[C]//Advances in Neural Information Processing Systems, 2021, 34: 11945-11959. |