[1] 聂光涛, 黄华. 光学遥感图像目标检测算法综述[J]. 自动化学报, 2021, 47(8): 1749-1768.
NIE G T, HUANG H. A survey of object detection in optical remote sensing images [J]. Acta Automatica Sinica, 2021, 47(8): 1749-1768.
[2] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005: 886-893.
[3] FELZENZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8.
[4] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional? networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[5] GIESHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[8] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[9] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speedand accuracy of object detection[J]. arXiv:2004.10934, 2020.
[10] 吴杰, 高策, 余毅, 等. 改进LDS_YOLO网络的遥感飞机检测算法研究[J]. 计算机工程与应用, 2022, 58(15): 210-219.
WU J, GAO C, YU Y, et al. Research on improved LDS_YOLO network remote sensing aircraft detection algorithm[J]. Computer Engineering and Applications, 2022, 58(15): 210-219.
[11] 李北明, 金荣璐, 徐召飞, 等. 基于特征蒸馏的改进Ghost-YOLOv5红外目标检测算法[J]. 郑州大学学报(工学版), 2022, 43(1): 20-26.
LI B M, JIN R L, XU Z F, et al. An improved Ghost-YOLOv5 infrared target detection algorithm based on feature distillation[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(1): 20-26.
[12] 胡皓, 郭放, 刘钊. 改进YOLOX-S模型的施工场景目标检测[J]. 计算机科学与探索, 2023, 17(5): 1089-1101.
HU H, GUO F, LIU Z. Object detection based on improved YOLOX-S model in construction sites[J]. Journal of Frontiers of Computer Science & Technology, 2023, 17(5): 1089-1101.
[13] 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111.
JIA T H, PENG L, DAI F F. Object detector with residual learning and multi-scale feature enhancement[J]. Journal of Frontiers of Computer Science & Technology, 2023, 17(5): 1102-1111.
[14] 赵明, 张浩然. 一种基于跨域融合网络的红外目标检测方法[J]. 光子学报, 2021, 50(11): 339-349.
ZHAO M, ZHANG H R. An infrared object detection method based on cross-domain fusion network[J]. Acta Photonica Sinica, 2021, 50(11): 339-349.
[15] 黄磊, 杨媛, 杨成煜, 等. FS-YOLOv5: 轻量化红外目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 215-224.
HUANG L, YANG Y, YANG C Y, et al. FS-YOLOv5: lightweight infrared rode target detection method[J]. Computer Engineering and Applications, 2023, 59(9): 215-224.
[16] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[17] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[18] TANG Y, HAN K, GUO J, et al. Gho-stNetV2: enhance cheap operation with long-range attention[J]. arXiv:2211. 12905, 2022.
[19] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[20] CHEN G, CHOI W, YU X, et al. Learning efficient object detection models with knowledge distillation[C]//Advances in Neural Information Processing Systems, 2017.
[21] JOCHER G, STOKEN A, BOROVEC J, et al. ultralytics/yolov5: v3.0[Z]. Zenodo, 2020.
[22] HAN K, WANG Y, TIAN Q, et al. Ghostnet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[23] WANG Y, LIAO H Y M, YEH I H. Designing network design strategies through gradient path analysis[J]. arXiv:2211.04800, 2022.
[24] KAISER L, GOMEZ A N, CHOLLET F. Depthwise separable convolutions for neural machine translation[J]. arXiv:1706.03059, 2017.
[25] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[26] HE J, ERFANI S, MA X, et al. Alpha-IoU: a family of power intersection over union losses for bounding box regression[C]//Advances in Neural Information Processing Systems, 2021: 20230-20242. |