[1] VIOLA P A, JONES M J. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001.
[2] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision & Pattern Recognition, 2005.
[3] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[5] GIRSHICK R. Fast Region-based convolutional network method[C]//Proceedings of the lEEE International Conference on Computer Vision, 2015: 1440-1448.
[6] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans PatternAnal Mach Intell, 2015, 39(6): 1137-1149.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, 2016: 21-37.
[8] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2999-3007.
[9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[10] REDMON J, FARHAD1A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[11] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[12] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[13] 樊嵘, 马小陆. 面向拥挤行人检测的改进DETR算法[J]. 计算机工程与应用, 2023, 59(19): 159-165.
FAN R, MA X L. Improved DETR for crowded pedestrian detection[J]. Computer Engineering and Applications, 2023, 59(19): 159-165.
[14] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[15] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[16] 韦强, 胡晓阳, 赵虹鑫. 改进YOLOv5的交通标志检测方法[J]. 计算机工程与应用, 2023, 59(13): 229-237.
WEI Q, HU X Y, ZHAO H X. Improved traffic sign detection method for YOLOv5[J]. Computer Engineering and Applications, 2023, 59(13): 229-237.
[17] RAO Y, ZHAO W, Tang Y, et al. Hornet: efficient high-order spatial interactions with recursive gated convolutions[J]. arXiv:2207.14284, 2022.
[18] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[19] FRANK E, HALL M. A simple approach to ordinal classification[C]//European Conference on Machine Learning. Berlin, Heidelberg: Springer, 2001: 145-156.
[20] 盛博莹, 侯进, 李嘉新, 等. 面向复杂交通场景的道路目标检测方法[J]. 计算机工程与应用, 2023, 59(15): 87-96.
SHENG F Y, HOU J, LI J X, et al. Road object detection method for complex road scenes[J]. Computer Engineering and Applications, 2023, 2023, 59(15): 87-96.
[21] 冉险生, 苏山杰, 陈俊豪, 等. 自适应特征融合的复杂道路场景目标检测算法[J]. 计算机工程与应用, 2023, 59(24): 216-226.
RAN X S, SU S J, CHEN J H, et al. Object detection algorithm for complex road scenes based on adaptive feature fusion[J]. Computer Engineering and Applications, 2023, 59(24): 216-226.
[22] LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]//Advances in Neural Information Processing Systems, 2020: 21002-21012.
[23] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[24] TONG Z, CHENY, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[25] ZHANG X, ZENG H, GUO S, et al. Efficient long- range attention network for images uper-resolution[J]. arXiv:2203.06697, 2022.
[26] ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. arXiv:1702.03118, 2017.
[27] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. arXiv:1911.08287, 2019.
[28] LIU R, LEHMAN J, MOLINO P, et al. An intriguing failing of convolutional neural networks and the CoordConv solution[J]. arXiv:1807.03247, 2018.
[29] CHEN J, KAOS H, HE H, et al. Run, don’t walk: chasing higher flops for faster neural networks[J]. arXiv:2303. 03667, 2023.
[30] HAN J, LIANG X, XU H, et al. SODA10M: a large-scale2D self/semi-supervised object detection dataset for autonomous driving[J]. arXiv:2106.11118, 2021.
[31] HAN K, WANG Y, TIAN Q, et al. Ghostnet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[32] GENNARI M, FAWCETT R, PRISACARIU V A. DSConv: efficient convolution operator[J]. arXiv:1901.01928, 2019.
[33] ZHU X, HU H, LIN S, et al. Deformable convnets v2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9308-9316. |