ZHANG Cuiwen, ZHANG Changlun, HE Qiang, WANG Hengyou. Research on Loss Function of Box Regression in Object Detection[J]. Computer Engineering and Applications, 2021, 57(20): 97-103.
[1] 张泽轩,陈虎,吴志红,等.基于深度学习的道路实景行人车辆检测[J].现代计算机(专业版),2018(10):34-38.
ZHANG Z X,CHEN H,WU Z H,et al.Detection of pedestrian and vehicle based on deep learning[J].Modern Computer,2018(10):34-38.
[2] 陈超,宣士斌,徐俊格.复杂背景下的行人检测与分割[J].计算机工程与应用,2012,48(30):177-181.
CHEN C,XUAN S B,XU J G.Pedestrian detection and segmentation under background clutter[J].Computer Engineering and Applications,2012,48(30):177-181.
[3] 李云鹏,侯凌燕,王超.基于YOLOv3的自动驾驶中运动目标检测[J].计算机工程与设计,2019,40(4):246-251.
LI Y P,HOU L Y,WANG C.Moving objects detection in automatic driving based on YOLOv3[J].Computer Engineering and Design,2018,40(12):2812-2819.
[4] 张斌,何明,陈希亮,等.改进DDPG算法在自动驾驶中的应用[J].计算机工程与应用,2019,55(10):264-270.
ZHANG B,HE M,CHEN X L,et al.Self-driving via improved DDPG algorithm[J].Computer Engineering and Applications,2019,55(10):264-270.
[5] 戴凤智,魏宝昌,欧阳育星,等.基于深度学习的视频跟踪研究进展综述[J].计算机工程与应用,2019,55(10):16-29.
DAI F Z,WEI B C,OUYANG Y X,et al.Survey of research progress of video tracking based on deep learning[J].Computer Engineering and Applications,2019,55(10):16-29.
[6] 袁国武.智能视频监控中的运动目标检测和跟踪算法研究[D].昆明:云南大学,2012.
YUAN G W.Research on moving object detection and tracking algorithm in intelligent video surveillance[D].Kunming:Yunnan University,2012.
[7] 孙彦,丁学文,雷雨婷.基于目标检测模型的人脸识别技术[J].计算机与网络,2019,45(22):68-71.
SUN Y,DING X W,LEI Y T.Face recognition technology based on object detection model[J].Computer and Network,2019,45(22):68-71.
[8] 苏煜,山世光,陈熙霖,等.基于全局和局部特征集成的人脸识别[J].软件学报,2010(8):71-84.
SU Y,SHAN S G,CHEN X L,et al.Integration of global and local feature for face recognition[J].Journal of Software,2010(8):71-84.
[9] 张丽.车辆视频检测与跟踪系统的算法研究[D].杭州:浙江大学,2003.
ZHANG L.Research on algorithm of vehicle video detection and tracking system[D].Hangzhou:Zhejiang Univesity,2003.
[10] 王夏黎,周明全,耿国华.基于视频检测和颜色的车辆牌照提取方法[J].计算机应用与软件,2005(11):41-44.
WANG X L,ZHOU M Q,GENG H H.An approach of vehicle plate extract based on visual detection and color information[J].Computer Applications and Software,2005(11):41-44.
[11] DROLSHAGEN G,BASSANO E,BERNARDI F,et al.Precursor services for a near-earth object segment of ESA’s space situational awareness programme[J].Nature,2012,215:6229.
[12] CHANG W Z,XIAN Z L,JUN D,et al.Infrared ship object segment based on MFFK and MeanShift filtering[J].Laser & Infrared,2010,40(9):1023-1026.
[13] TSUCHIE S,HIGASHI M.High-quality segmentation of scanned data for industrial object:segment generation from clustered vertices[C]//JSPE Semestrial Meeting,2013.
[14] KOSCHNY D V,DROLSHAGEN G,BOBRINSKY N.The near-earth object segment of ESA’s space situational awareness programme[C]//Making Safety Matter,2010.
[15] KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNet classification with deep convolutional neural networks[C]//Proceedings of NIPS,2012.
[16] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587.
[17] 丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):1-10.
DING S F,QI B J,TAN H Y.An review on theory and algorithm support vector machines[J].Journal of University of Electronic Science and Technology of China,2011,40(1):1-10.
[18] GIRSHICK R.Fast R-CNN[C]//IEEE International Conference on Computer Vision(ICCV),2015.
[19] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
[20] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition,2015.
[21] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016.
[22] REDMON J,FARHADI A.YOLOv3:an incremental improvement[C]//IEEE Conference on Computer Vision and Pattern Recognition,2018.
[23] YU J,JIANG Y,WANG Z,et al.UnitBox:an advanced object detection network[J].arXiv:1608.01471,2016.
[24] REZATOFIGHI H,TSOI N,GWAK J Y,et al.Generalized intersection over union:a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2019.