[1] LI Z B, LI S, LUO X. An overview of calibration technology of industrial robots[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(1): 23-36.
[2] LI B H, HOU B C, YU W T, et al. Applications of artificial intelligence in intelligent manufacturing: a review[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 86-96.
[3] MUR-ARTAL R, MONTIEL J M M, TARDóS J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163.
[4] WANG J K, CHI W Z, LI C M, et al. Neural RRT*: learning-based optimal path planning[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(4): 1748-1758.
[5] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
[6] ZHANG H B, SAN H J, CHEN J P, et al. Black eagle optimizer: a metaheuristic optimization method for solving engineering optimization problems[J]. Cluster Computing, 2024, 27(9): 12361-12393.
[7] WANG J, WANG W C, HU X X, et al. Black-winged kite algorithm: a nature-inspired meta-heuristic for solving benchmark functions and engineering problems[J]. Artificial Intelligence Review, 2024, 57(4): 98.
[8] TROJOVSKá E, DEHGHANI M, TROJOVSKY P. Zebra optimization algorithm: a new bio-inspired optimization algorithm for solving optimization algorithm[J]. IEEE Access, 2022, 10: 49445-49473.
[9] GHASEMI M, ZARE M, TROJOVSKY P, et al. Optimization based on the smart behavior of plants with its engineering applications: ivy algorithm[J]. Knowledge-Based Systems, 2024, 295: 111850.
[10] 马溪原, 吴耀文, 方华亮, 等. 采用改进细菌觅食算法的风/光/储混合微电网电源优化配置[J]. 中国电机工程学报, 2011, 31(25): 17-25.
MA X Y, WU Y W, FANG H L, et al. Optimal sizing of hybrid solar-wind distributed generation in an islanded microgrid using improved bacterial foraging algorithm[J]. Proceedings of the CSEE, 2011, 31(25): 17-25.
[11] 杨锡运, 关文渊, 刘玉奇, 等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J]. 中国电机工程学报, 2015, 35(S1): 146-153.
YANG X Y, GUAN W Y, LIU Y Q, et al. Prediction intervals forecasts of wind power based on PSO-KELM[J]. Proceedings of the CSEE, 2015, 35(S1): 146-153.
[12] ROBERGE V, TARBOUCHI M, LABONTE G. Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 132-141.
[13] FEI T, WANG H J, LIU L X, et al. Research on multi-strategy improved sparrow search optimization algorithm[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 17220-17241.
[14] WANG S X, CAO L, CHEN Y D, et al. Gorilla optimization algorithm combining sine cosine and Cauchy variations and its engineering applications[J]. Scientific Reports, 2024, 14(1): 7578.
[15] PANG Z M, WANG Y J, YANG F. Application of optimized Kalman filtering in target tracking based on improved gray wolf algorithm[J]. Scientific Reports, 2024, 14(1): 8955.
[16] JYOTHI K K, BORRA S R, SRILAKSHMI K, et al. A novel optimized neural network model for cyber attack detection using enhanced whale optimization algorithm[J]. Scientific Reports, 2024, 14: 5590.
[17] 岑哲, 符强, 童楠. 基于自适应鱼鹰优化算法的无人机路径规划[J]. 电光与控制, 2024, 31(11): 26-33.
CEN Z, FU Q, TONG N. UAV path planning based on adaptive osprey optimization algorithm[J]. Electronics Optics & Control, 2024, 31(11): 26-33.
[18] DEHGHANI M, TROJOVSKY P. Osprey optimization algorithm: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J]. Frontiers in Mechanical Engineering, 2023, 8: 1126450.
[19] LI Q H, SHI H, ZHAO W T, et al. Enhanced dung beetle optimization algorithm for practical engineering optimization[J]. Mathematics, 2024, 12(7): 1084.
[20] 黄琦, 陈海洋, 刘妍, 等. 基于多策略融合灰狼算法的移动机器人路径规划[J]. 空军工程大学学报, 2024, 25(3): 112-120.
HUANG Q, CHEN H Y, LIU Y, et al. A mobile robot path planning based on multi-strategy fusion gray wolf algorithm[J]. Journal of Air Force Engineering University, 2024, 25(3): 112-120.
[21] 娄革伟, 郑永煌, 陈均, 等. 混合多策略改进的蜣螂优化算法[J]. 计算机工程与应用, 2024, 60(24): 97-109.
LOU G W, ZHENG Y H, CHEN J, et al. Improved dung beetle optimization algorithm by hybrid multi-strategy[J]. Computer Engineering and Applications, 2024, 60(24): 97-109.
[22] FU J C, WU C L, WANG J W, et al. Lithium-ion battery SOH prediction based on VMD-PE and improved DBO optimized temporal convolutional network model[J]. Journal of Energy Storage, 2024, 87: 111392.
[23] DEHGHANI M, MONTAZERI Z, TROJOVSKá E, et al. Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2023, 259: 110011.
[24] TROJOVSKY P, DEHGHANI M. Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications[J]. Sensors, 2022, 22(3): 855.
[25] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[26] FARIS H, ALJARAH I, AL-BETAR M A, et al. Grey wolf optimizer: a review of recent variants and applications[J]. Neural Computing and Applications, 2018, 30(2): 413-435.
[27] 张伟康, 刘升, 任春慧. 混合策略改进的麻雀搜索算法[J]. 计算机工程与应用, 2021, 57(24): 74-82.
ZHANG W K, LIU S, REN C H. Mixed strategy improved sparrow search algorithm[J]. Computer Engineering and Applications, 2021, 57(24): 74-82.
[28] 吴素谦, 闫建国, 杨斌, 等. 多策略改进的天鹰优化器及其在路径规划中的应用[J]. 计算机应用, 2025, 45(3): 937-945.
WU S Q, YAN J G, YANG B, et al. Multi-strategy improved Aquila optimizer and its application in path planning[J]. Journal of Computer Applications, 2025, 45(3): 937-945.
[29] 张志文, 刘伯威, 张继园, 等. 麻雀搜索算法-粒子群算法与快速扩展随机树算法协同优化的智能车辆路径规划[J]. 中国机械工程, 2024, 35(6): 993-999.
ZHANG Z W, LIU B W, ZHANG J Y, et al. Cooperative optimization of intelligent vehicle path planning based on PSO-SSA and RRT[J]. China Mechanical Engineering, 2024, 35(6): 993-999. |