[1] 顾蕾. 车辆路径规划算法及其应用综述[J]. 物流工程与管理, 2019, 41(8): 100-101.
GU L. Summary of vehicle path planning algorithm and its application[J]. Logistics Engineering and Management, 2019, 41(8): 100-101.
[2] 徐小强, 王明勇, 冒燕. 基于改进人工势场法的移动机器人路径规划[J]. 计算机应用, 2020, 40(12): 3508-3512.
XU X Q, WANG M Y, MAO Y. Path planning of mobile robot based on improved artificial potential field method[J]. Journal of Computer Applications, 2020, 40(12): 3508-3512.
[3] 王兵, 吴洪亮, 牛新征. 基于改进势场法的机器人路径规划[J]. 计算机科学, 2022, 49(7): 196-203.
WANG B, WU H L, NIU X Z. Robot path planning based on improved potential field method[J]. Computer Science, 2022, 49(7): 196-203.
[4] 吴明晖, 黄海军, 王先伟. 基于改进蚁群算法的机器人焊接路径规划[J]. 焊接学报, 2018, 39(10): 113-118.
WU M H, HUANG H J, WANG X W. Robot welding path planning based on improved ant colony algorithm[J]. Transactions of the China Welding Institution, 2018, 39(10): 113-118.
[5] 武义, 欧明敏, 段立伟. 基于改进A*算法和动态窗口法的机器人路径规划研究[J]. 工业控制计算机, 2020, 33(10): 67-70.
WU Y, OU M M, DUAN L W. Path planning of mobile robot by fusion of improved A* algorithm and dynamic window method[J]. Industrial Control Computer, 2020, 33(10): 67-70.
[6] 曹彦博, 颜京才, 李旭升, 等. 基于改进混合A*算法的自动泊车系统路径搜索方法[J]. 汽车技术, 2023(6): 37-41.
CAO Y B, YAN J C, LI X S, et al. A method of path search for automatic parking system based on improved hybrid A* algorithm[J]. Automobile Technology, 2023(6): 37-41.
[7] LAVALLE S. Rapidly-exploring random trees: a new tool for path planning[R]. Ames: Computer Science Department of Iowa State University, 1998.
[8] LAVALLE S M. Planning algorithms[M]. Cambridge: Cambridge University Press, 2006: 482-580.
[9] NOH G, PARK J, HAN D, et al. Selective goal aiming rapidly exploring random tree path planning for UAVs[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(6): 1397-1412.
[10] 文汉云, 刘攀. 基于多策略改进的RRT算法[J]. 长江大学学报 (自然科学版), 2022: 1-8.
WEN H Y, LIU P. Improved RRT algorithm based on multi-strategy[J]. Journal of Yangtze University (Natural Science Edition), 2022: 1-8.
[11] 张伟民, 付仕雄. 基于改进RRT*算法的移动机器人路径规划[J]. 华中科技大学学报 (自然科学版), 2021, 49(1): 31-36.
ZHANG W M, FU S X. Mobile robot path planning based on improved RRT* algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(1): 31-36.
[12] 阮晓钢, 刘少达, 朱晓庆. 基于AHMRRT的移动机器人路径规划算法[J]. 北京工业大学学报, 2022, 48(2): 121-128.
RUAN X G, LIU S D, ZHU X Q. Path planning algorithm of mobile robot based on AHMRRT[J]. Journal of Beijing University of Technology, 2022, 48(2): 121-128.
[13] LI B, CHEN B. An adaptive rapidly-exploring random tree[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(2): 283-294.
[14] KARAMA S, FRAZZOLI E. Incremental sampling-based algorithms for optimal motion planning[J]. Robotics: Science and Systems, 2011, 6: 267-274.
[15] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2014: 2997-3004.
[16] 代军, 李志明, 李艳琴, 等. 基于改进Informed-RRT*算法的机器人路径规划[J]. 河南理工大学学报 (自然科学版), 2022, 41(4): 95-100.
DAI J, LI Z M, LI Y Q, et al. Robot path planning based on improved informed-RRT* algorithm[J]. Journal of Henan Polytechnic University (Natural Science), 2022, 41(4): 95-100.
[17] 栾添添, 王皓, 孙明晓, 等. 基于动态变采样区域RRT的无人车路径规划[J]. 控制与决策, 2023, 38(6): 1721-1729.
LUAN T T, WANG H, SUN M X, et al. Path planning of unmanned vehicle based on dynamic variable sampling area RRT[J]. Control and Decision, 2023, 38(6): 1721-1729.
[18] 王海芳, 张瑶, 朱亚锟, 等. 基于改进双向RRT*的移动机器人路径规划算法[J]. 东北大学学报(自然科学版), 2021, 42(8): 1065-1070.
WANG H F, ZHANG Y, ZHU Y K, et al. Mobile robot path planning based on improved bidirectional RRT*[J]. Journal of Northeastern University (Natural Science), 2021, 42(8): 1065-1070. |