[1] LIU L X, WANG X, YANG X, et al. Path planning techniques for mobile robots: review and prospect[J]. Expert Systems with Applications, 2023, 227: 120254.
[2] 崔炜, 朱发证. 机器人导航的路径规划算法研究综述[J]. 计算机工程与应用, 2023, 59(19): 10-20.
CUI W, ZHU F Z. Review of path planning algorithms for robot navigation[J]. Computer Engineering and Applications, 2023, 59(19): 10-20.
[3] LUO M, HOU X R, YANG J. Surface optimal path planning using an extended dijkstra algorithm[J]. IEEE Access, 2020, 8: 147827-147838.
[4] YONETANI R, TANIAI T, BAREKATAIN M, et al. Path planning using neural A* search[J]. arXiv:2009.07476, 2020.
[5] 马小陆, 梅宏. 基于改进势场蚁群算法的移动机器人全局路径规划[J]. 机械工程学报, 2021, 57(1): 19-27.
MA X L, MEI H. Mobile robot global path planning based on improved ant colony system algorithm with potential field[J]. Journal of Mechanical Engineering, 2021, 57(1): 19-27.
[6] 葛唱, 钱素琴. 改进麻雀搜索算法的无人车路径规划[J]. 导航定位学报, 2022, 10(6): 107-111.
GE C, QIAN S Q. Path planning of unmanned vehicle based on improved sparrow search algorithm[J]. Journal of Navigation and Positioning, 2022, 10(6): 107-111.
[7] LAVALLE S M. Rapidly-exploring random trees: a new tool path for planning[R]. AMES: Computer Science Department of Iowa State University, 1998.
[8] 鲁宇明, 周羽逵, 郭鑫, 等. 改进Informed RRT*算法移动机器人路径规划[J]. 计算机工程与应用, 2025, 61(8): 283-293.
LU Y M, ZHOU Y K, GUO X, et al. Mobile robot path planning based on improved informed RRT* algorithm[J]. Computer Engineering and Applications, 2025, 61(8): 283-293.
[9] HUANG S Y. Path planning based on mixed algorithm of RRT and artificial potential field method[C]//Proceedings of the 2021 4th International Conference on Intelligent Robotics and Control Engineering. Piscataway: IEEE, 2021: 149-155.
[10] WANG X P, MA X L, LI X X, et al. Target-biased informed trees: sampling-based method for optimal motion planning in complex environments[J]. Journal of Computational Design and Engineering, 2022, 9(2): 755-771.
[11] KARAMAN S, FRAZZOLI E. Incremental sampling-based algorithms for optimal motion planning[M]//Robotics. Cambridge, MA, USA: The MIT Press, 2011: 267-274.
[12] FAN H H, HUANG J H, HUANG X Z, et al. BI-RRT*: an improved path planning algorithm for secure and trustworthy mobile robots systems[J]. Heliyon, 2024, 10(5): e26403.
[13] GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2014: 2997-3004.
[14] 梁永豪, 陈秋莲, 王成栋. 基于RRT改进的移动机器人路径规划算法[J]. 计算机工程与设计, 2024, 45(3): 748-754.
LIANG Y H, CHEN Q L, WANG C D. Improved path planning algorithm for mobile robot based on RRT[J]. Computer Engineering and Design, 2024, 45(3): 748-754.
[15] 罗济雨, 孙丙宇. 基于改进型RRT*算法的移动机器人路径规划[J]. 计算机工程与设计, 2024, 45(8): 2357-2363.
LUO J Y, SUN B Y. Path planning of mobile robot based on improved RRT* algorithm[J]. Computer Engineering and Design, 2024, 45(8): 2357-2363.
[16] 栾添添, 王皓, 孙明晓, 等. 基于动态变采样区域RRT的无人车路径规划[J]. 控制与决策, 2023, 38(6): 1721-1729.
LUAN T T, WANG H, SUN M X, et al. Path planning of unmanned vehicle based on dynamic variable sampling area RRT[J]. Control and Decision, 2023, 38(6): 1721-1729.
[17] 王晓军, 崔锡杰, 李晓航. 动态环境下改进BIT*算法的机器人路径规划[J]. 计算机工程与应用, 2025, 61(7): 361-391.
WANG X J, CUI X J, LI X H. Robot path planning with improved BIT* algorithm in dynamic environment[J]. Computer Engineering and Applications, 2025, 61(7): 361-391.
[18] PENG J, CHEN Y A, DUAN Y F, et al. Towards an online RRT-based path planning algorithm for ackermann-steering vehicles[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2021: 7407-7413.
[19] GAMMELL J D, BARFOOT T D, SRINIVASA S S. Batch Informed Trees (BIT*): informed asymptotically optimal anytime search[J]. The International Journal of Robotics Research, 2020, 39(5): 543-567.
[20] 王杨斌, 章伟, 王为科, 等. 改进Informed-RRT*的动态环境路径规划算法[J]. 电光与控制, 2022, 29(5): 28-32.
WANG Y B, ZHANG W, WANG W K, et al. An improved informed-RRT* algorithm for path planning in dynamic environment[J]. Electronics Optics & Control, 2022, 29(5): 28-32.
[21] KYAW P T, LE A V, VEERAJAGADHESWAR P, et al. Energy-efficient path planning of reconfigurable robots in complex environments[J]. IEEE Transactions on Robotics, 2022, 38(4): 2481-2494.
[22] LI Y, CHENG H. APP: A* post-processing algorithm for robots with bidirectional shortcut and path perturbation[J]. IEEE Robotics and Automation Letters, 2023, 8(11): 7775-7782.
[23] LAVALLE S M. Planning algorithms[M]. New York, NY: Cambridge University Press, 2006: 482-580. |