Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (9): 48-64.DOI: 10.3778/j.issn.1002-8331.2309-0406
• Research Hotspots and Reviews • Previous Articles Next Articles
PENG Lin, SONG Jun, XIONG Lingzhu, DU jianqiang, YE Qing, LIU Andong
Online:
2024-05-01
Published:
2024-04-29
彭琳,宋珺,熊玲珠,杜建强,叶青,刘安栋
PENG Lin, SONG Jun, XIONG Lingzhu, DU jianqiang, YE Qing, LIU Andong. Advances in Knowledge Fusion Research in Medical Domain[J]. Computer Engineering and Applications, 2024, 60(9): 48-64.
彭琳, 宋珺, 熊玲珠, 杜建强, 叶青, 刘安栋. 医学领域知识融合研究进展[J]. 计算机工程与应用, 2024, 60(9): 48-64.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2309-0406
[1] 陈华钧. 知识图谱导论[M]. 北京: 电子工业出版, 2021: 151-166. CHEN H J. Introduction to knowledge graph[M]. Beijing: Publishing House of Electronics Industry, 2021: 151-166. [2] FRENCH E, MCINNES B T. An overview of biomedical entity linking throughout the years[J]. Journal of Biomedical Informatics, 2022, 137: 104252. [3] SHI J, YUAN Z, GUO W, et al. Knowledge-graph-enabled biomedical entity linking: a survey[J]. World Wide Web, 2023, 26(5): 2593-2622. [4] HOGAN A, BLOMQVIST E, COCHEZ M, et al. Knowledge graphs[J]. ACM Computing Surveys, 2021, 54(4): 1-37. [5] SUN Z, HU W, LI C. Cross-lingual entity alignment via joint attribute-preserving embedding[C]//Proceedings of the 16th International Semantic Web Conference, Vienna, Austria, October 21-25, 2017: 628-644. [6] SUN Z, ZHANG Q, HU W, et al. A benchmarking study of embedding-based entity alignment for knowledge graphs[J]. Proceedings of the VLDB Endowment, 2020, 13(11): 2326-2340. [7] ZHANG Z, CHEN J, CHEN X, et al. An industry evaluation of embedding-based entity alignment[J]. arXiv:2010.11522, 2020. [8] DO?AN R I, LEAMAN R, LU Z. NCBI disease corpus: a resource for disease name recognition and concept normalization[J]. Journal of Biomedical Informatics, 2014, 47: 1-10. [9] BASALDELLA M, LIU F, SHAREGHI E, et al. COMETA: a corpus for medical entity linking in the social media[J]. arXiv:2010.03295, 2020. [10] DONNELLY K. SNOMED-CT: the advanced terminology and coding system for eHealth[J]. Studies in Health Technology and Informatics, 2006, 121: 279. [11] TWIGG S R F, HUFNAGEL R B, MILLER K A, et al. A recurrent mosaic mutation in SMO, encoding the hedgehog signal transducer smoothened, is the major cause of Curry-Jones syndrome[J]. American Journal of Human Genetics, 2016, 98(6): 1256-1265. [12] 王明强. 中医古籍不孕症知识图谱的构建、挖掘与应用研究[D]. 北京: 中国中医科学院, 2022. WANG M Q. Research on the construction, knowledge mining and applicaticn of infertility knowledge graph in ancient books of traditional chinese medicine[D]. Beijing: China Academy of Chinese Medical Sciences, 2022. [13] 翟东升, 娄莹, 阚慧敏, 等. 基于多源异构数据的中医药知识图谱构建与应用研究[J]. 数据分析与知识发现, 2023, 7(9): 146-158. ZHAI D S, LOU Y, KAN H M, et al. Constructing tcm knowledge graph with multi-source heterogeneous data[J]. Data Analysis and Knowledge Discovery, 2023, 7(9): 146-158. [14] 胡正银, 刘蕾蕾, 代冰, 等. 基于领域知识图谱的生命医学学科知识发现探析[J]. 数据分析与知识发现, 2020, 4(11): 1-14. HU Z Y, LIU L L, DAI B, et al. Discovering subject knowledge in life and medical sciences with knowledge graph[J]. Data Analysis and Knowledge Discovery, 2020, 4(11): 1-14. [15] BODENREIDER O. The unified medical language system (UMLS): integrating biomedical terminology[J]. Nucleic Acids Research, 2004, 32(S1): 267-270. [16] 刘道文, 阮彤, 张晨童, 等. 基于多源知识图谱融合的智能导诊算法[J]. 中文信息学报, 2021, 35(1): 125-134. LIU D W, RUAN T, ZHANG C T, et al. Clinical departments recommendation by fusing knowledge graphs from electronic healthcare records and medical websites[J]. Journal of Chinese Information Processing, 2021, 35(1): 125-134. [17] HARRISON J E, WEBER S, JAKOB R, et al. ICD-11: an international classification of diseases for the twenty-first century[J]. BMC Medical Informatics And Decision Making, 2021, 21(6): 1-10. [18] GONG F, CHEN Y, WANG H, et al. On building a diabetes centric knowledge base via mining the Web[J]. BMC Medical Informatics and Decision Making, 2019, 19: 185-197. [19] AN B. Construction and application of Chinese breast cancer knowledge graph based on multi-source heterogeneous data[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 6776-6799. [20] 宋文欣. 面向医疗领域的实体对齐研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. SONG W X. Research on entity alignment for the medical field[D]. Harbin: Harbin Institute of Technology, 2018. [21] 蔡娇. 基于遗传病领域的实体对齐研究[D]. 苏州: 苏州大学, 2020. CAI J. Research on entity alignment based on genetic diseases[D]. Suzhou: Soochow University, 2020. [22] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems, 2013. [23] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80. [24] 孙倩南. 面向呼吸科室疾病的知识抽取与对齐[D]. 哈尔滨: 哈尔滨工业大学, 2019. SUN Q N. Knowledge extraction and alignment for respiratory diseases[D]. Harbin: Harbin Institute of Technology, 2019. [25] XIANG Y, ZHANG Z, CHEN J, et al. OntoEA: ontology-guided entity alignment via joint knowledge graph embedding[J]. arXiv:2105.07688, 2021. [26] 徐有为, 张宏军, 程恺, 等. 知识图谱嵌入研究综述[J]. 计算机工程与应用, 2022, 58(9): 30-50. XU Y W, ZHANG H J, CHENG K, et al. Comprehensive survey on knowledge graph embedding[J]. Computer Engineering and Applications, 2022, 58(9): 30-50. [27] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015. [28] XIE R, LIU Z, JIA J, et al. Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2016. [29] FANG A, LOU P, HU J, et al. Head and tail entity fusion model in medical knowledge graph construction: case study for pituitary adenoma[J]. JMIR Medical Informatics, 2021, 9(7): e28218. [30] LIN Y, LIU Z, LUAN H, et al. Modeling relation paths for representation learning of knowledge bases[J]. arXiv:1506. 00379, 2015. [31] 黄贺瑄, 王晓燕, 顾正位, 等. 医学知识图谱构建技术及发展现状研究[J]. 计算机工程与应用, 2023, 59(13): 33-48. HUANG H X, WANG X Y, GU Z W, et al. Research on construction technology and development status of medical knowledge graph[J]. Computer Engineering and Applications, 2023, 59(13): 33-48. [32] 程瑞. 面向中文医疗知识图谱的实体对齐方法研究及应用[D]. 北京: 北京邮电大学, 2020. CHENG R. Research and application of entity alignment methods for chinese medical knowledge graph[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. [33] WANG Z, LV Q, LAN X, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of the 2018 Conference on Empirical Methods In Natural Language Processing, 2018: 349-357. [34] ZHANG J, ZHANG Z, ZHANG H, et al. From electronic health records to terminology base: a novel knowledge base enrichment approach[J]. Journal of Biomedical Informatics, 2021, 113: 103628. [35] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representation, 2018. [36] 廖开际, 王莹. 基于MuGNN模型的互联网医疗知识融合研究[J]. 河南科学, 2021, 39(12): 2014-2022. LIAO K J, WANG Y. Research on internet medical knowledge fusion based on MuGNN model[J]. Henan Science, 2021, 39(12): 2014-2022. [37] 邬萌. 基于医疗领域的知识融合方法研究与实现[D]. 成都: 西南交通大学, 2021. ?WU M. Research and implementation of knowledge fusion method for medical field[D]. Chengdu: Southwest Jiaotong University, 2021. [38] 李丽双, 董姜媛. 一种基于中文电子病历知识图谱的实体对齐方法: 中国, 202210413638. 2[P]. 2022-07-08. LI L S, DONG J Y. A research on entity alignment based on knowledge graph of chinese electronic medical record: China, 202210413638.2[P]. 2022-07-08. [39]? DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. [40] 刘旭利, 金季豪, 阮彤, 等. 面向临床科研的医疗事件模型与开放数据集合构建[J]. 中文信息学报, 2020, 34(11): 37-48. LIU X L, JIN J H, RUAN T, et al. Construction of an open dataset for clinical event graph[J]. Journal of Chinese Information Processing, 2020, 34(11): 37-48. [41] MA Z, ZHAO L, LI J, et al. SiBERT: a siamese-based BERT network for chinese medical entities alignment[J]. Methods, 2022, 205: 133-139. [42] TANG J, ZHAO K, LI J. A fused gromov-wasserstein framework for unsupervised knowledge graph entity alignment[J]. arXiv:2305.06574, 2023. [43] LUO S, YU S. An accurate unsupervised method for joint entity alignment and dangling entity detection[C]//Findings of the Association for Computational Linguistics (ACL 2022), 2022: 2330-2339. [44] XU J, LI Y, XIE X, et al. Investigating graph structure information for entity alignment with dangling cases[J]. arXiv:2304.04718, 2023. [45] LI C, RAO Z, ZHENG Q, et al. A set of domain rules and a deep network for protein coreference resolution[J]. Database: the Journal of Biological Databases and Curation, 2018: bay065. [46] XIU X, QIAN Q, WU S. Construction of a digestive system tumor knowledge graph based on chinese electronic medical records: development and usability study[J]. JMIR Medical Informatics, 2020, 8(10): e18287. [47] LIU F, LIU M, LI M, et al. Automatic knowledge extraction from chinese electronic medical records and rheumatoid arthritis knowledge graph construction[J]. Quantitative Imaging in Medicine and Surgery, 2023, 13(6): 3873. [48] SUN H, XIAO J, ZHU W, et al. Medical knowledge graph to enhance fraud, waste, and abuse detection on claim data: model development and performance evaluation[J]. JMIR Medical Informatics, 2020, 8(7): e17653. [49] LEAMAN R, ISLAMAJ DO?AN R, LU Z. DNorm: disease name normalization with pairwise learning to rank[J]. Bioinformatics, 2013, 29(22): 2909-2917. [50] WU Y, DENNY J C, TRENT ROSENBLOOM S, et al. A long journey to short abbreviations: developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD)[J]. Journal of the American Medical Informatics Association, 2017, 24: 79-86. [51] ANGELL R, MONATH N, MOHAN S, et al. Clustering-based inference for biomedical entity linking[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021: 2598-2608. [52] DUQUE A, STEVENSON M, MARTINEZ-ROMO J, et al. Co-occurrence graphs for word sense disambiguation in the biomedical domain[J]. Artificial Intelligence in Medicine, 2018, 87: 9-19. [53] RUAS P, LAMURIAS A, COUTO F M. Linking chemical and disease entities to ontologies by integrating PageRank with extracted relations from literature[J]. Journal of Cheminformatics, 2020, 12(1): 1-11. [54] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016: 326-366. [55] LUO Y, SONG G, LI P, et al. Multi-task medical concept normalization using multi-view convolutional neural network[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018 : 5868-5875. [56] SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85-117. [57] SHAO D, ZHENG N, YANG Z, et al. Domain-specific Chinese word segmentation based on Bi-directional long-short term memory model[J]. IEEE Access, 2019, 7: 12993-13002. [58] YAN C, ZHANG Y, LIU K, et al. Enhancing unsupervised medical entity linking with multi-instance learning[J]. BMC Medical Informatics and Decision Making, 2021, 21: 317. [59] ZHAO S, LIU T, ZHAO S, et al. A neural multi-task learning framework to jointly model medical named entity recognition and normalization[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 817-824. [60] LIU F, SHAREGHI E, MENG Z, et al. Self-alignment pretraining for biomedical entity representations[J]. arXiv:2010. 11784, 2020. [61] LIU F, VULI? I, KORHONEN A, et al. Learning domain-specialised representations for cross-lingual biomedical entity linking[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), 2021: 565-574. [62] DONG H, CHEN J, HE Y, et al. Reveal the unknown: out-of-knowledge-base mention discovery with entity linking[J]. arXiv:2302.07189, 2023. [63] LI L, ZHAI Y, GAO J, et al. Stacking-BERT model for chinese medical procedure entity normalization[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 1018-1036. [64] CHEN L, VAROQUAUX G, SUCHANEK F M. A lightweight neural model for biomedical entity linking[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 12657-12665. [65] LAI T, JI H, ZHAI C X. BERT might be overkill: a tiny but effective biomedical entity linker based on residual convolutional neural networks[C]//Findings of the Association for Computational Linguistics (EMNLP 2021), 2021: 1631-1639. [66] ABDURXIT M, TOHTI T, HAMDULLA A. An efficient method for biomedical entity linking based on inter-and intra-entity attention[J]. Applied Sciences, 2022, 12(6): 3191. [67] YUAN H, YUAN Z, YU S. Generative biomedical entity linking via knowledge base-guided pre-training and synonyms-aware fine-tuning[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2022: 4038-4048. [68] DE CAO N, AZIZ W, TITOV I. Highly parallel autoregressive entity linking with discriminative correction[J]. arXiv:2109.03792, 2021. [69] MRINI K, NIE S, GU J, et al. Detection, disambiguation, re-ranking: autoregressive entity linking as a multi-task problem[J]. arXiv:2204.05990, 2022. [70] XIE J, JIANG J, WANG Y, et al. Learning an expandable EMR-based medical knowledge network to enhance clinical diagnosis[J]. Artificial Intelligence in Medicine, 2020, 107: 101927. [71] 刘龙航. 基于多资源的中文医疗知识图谱构建方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. LIU L H. Research on the construction method of chinese medical knowledge graph based on multi-resources[D]. Harbin: Harbin Institute of Technology, 2020. [72] YUAN Z, ZHAO Z, SUN H, et al. CODER: knowledge-infused cross-lingual medical term embedding for term normalization[J]. Journal of Biomedical Informatics, 2022, 126: 103983. [73] 王莹. 面向互联网医疗百科的知识抽取和融合研究[D]. 广州: 华南理工大学, 2022. WANG Y. Research on knowledge extraction and fusion for Internet Medical Encyclopedia[D]. Guangzhou: South China University of Technology, 2022. [74] ZHANG S, CHENG H, VASHISHTH S, et al. Knowledge-rich self-supervision for biomedical entity linking[C]//Findings of the Association for Computational Linguistics (EMNLP 2022), 2022: 868-880. [75] OBERHAUSER T, BISCHOFF T, BRENDEL K, et al. Trainx-named entity linking with active sampling and bi-encoders[C]//Proceedings of the 28th International Conference on Computational Linguistics: System Demonstrations, 2020: 64-69. [76] WIATRAK M, ARVANITI E, BRAYNE A, et al. Proxy-based zero-shot entity linking by effective candidate retrieval[J]. arXiv:2301.13318, 2023. [77] QI Z, ZHANG Z, CHEN J, et al. Unsupervised knowledge graph alignment by probabilistic reasoning and semantic embedding[J]. arXiv:2105.05596, 2021. [78] BANSAL T, VERGA P, CHOUDHARY N, et al. Simultaneously linking entities and extracting relations from biomedical text without mention-level supervision[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 7407-7414. [79] ZHU M, CELIKKAYA B, BHATIA P, et al. Latte: latent type modeling for biomedical entity linking[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 9757-9764. [80] BHOWMIK R, STRATOS K, DE MELO G. Fast and effective biomedical entity linking using a dual encoder[J]. arXiv:2103.05028, 2021. [81] LI C, CAO Y, HOU L, et al. Semi-supervised entity alignment via joint knowledge embedding model and cross-graph model[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, 2019: 2723-2732. [82] CAO Y, LIU Z, LI C, et al. Multi-channel graph neural network for entity alignment[J]. arXiv:1908.09898, 2019. [83] WU Y, LIU X, FENG Y, et al. Neighborhood matching network for entity alignment[J]. arXiv:2005.05607, 2020. [84] SUN Z, WANG C, HU W, et al. Knowledge graph alignment network with gated multi-hop neighborhood aggregation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 222-229. [85] VARMA M, ORR L, WU S, et al. Cross-domain data integration for named entity disambiguation in biomedical text[C]//Findings of the Association for Computational Linguistics (EMNLP 2021), 2021: 4566-4575. [86] UJIIE S, ISO H, YADA S, et al. End-to-end biomedical entity linking with span-based dictionary matching[C]//Proceedings of the 20th Workshop on Biomedical Language Processing, 2021: 162-167. [87] YUAN H, LU K, YUAN Z. Exploring partial knowledge base inference in biomedical entity linking[J]. arXiv:2303. 10330, 2023. [88] VRETINARIS A, LEI C, EFTHYMIOU V, et al. Medical entity disambiguation using graph neural networks[J]. arXiv:2104.01488, 2021. |
[1] | TANG Wentao, HU Zelin. Survey of Agricultural Knowledge Graph [J]. Computer Engineering and Applications, 2024, 60(2): 63-76. |
[2] | QIU Yunfei, XING Haoran, LI Gang. Summary of Research on Construction of Knowledge Graph for Mine Construction [J]. Computer Engineering and Applications, 2023, 59(7): 64-79. |
[3] | SHAN Xiaohuan, QI Xin’ao, SONG Baoyan, ZHANG Haolin. Domain Entity Disambiguation Combining Multi-Feature Graph and Entity Influence [J]. Computer Engineering and Applications, 2023, 59(5): 305-311. |
[4] | LI Fengying, LI Jiapeng. Joint Triple Embedding for Entity Alignment [J]. Computer Engineering and Applications, 2023, 59(24): 70-77. |
[5] | XIN Hui, XIE Zhenxi, LI Pengjun, WANG Jinlong, XIONG Xiaoyun. Research on Knowledge Graph Construction Method for Food Storage Field [J]. Computer Engineering and Applications, 2023, 59(22): 329-342. |
[6] | XU Youwei, ZHANG Hongjun, CHENG Kai, LIAO Xianglin, ZHANG Zixuan, LI Lei. Comprehensive Survey on Knowledge Graph Embedding [J]. Computer Engineering and Applications, 2022, 58(9): 30-50. |
[7] | WANG Yu, WANG Xin, ZHANG Shujuan, ZHENG Guoqiang, ZHAO Long, ZHENG Gaofeng. Research on Efficient Knowledge Fusion Method for Heterogeneous Big Data Environments [J]. Computer Engineering and Applications, 2022, 58(6): 142-148. |
[8] | XIONG Zhongmin, MA Haiyu, LI Shuai, ZHANG Na. Summary of Application and Prospect Analysis of Knowledge Graphs in Marine Field [J]. Computer Engineering and Applications, 2022, 58(3): 15-33. |
[9] | XIE Tianyang, CHEN Ming, XI Xiaotao. Research on Quantitative Evaluation of Knowledge Fusion in News Knowledge Graph [J]. Computer Engineering and Applications, 2022, 58(21): 294-300. |
[10] | YUAN Jun, LIU Guozhu, LIANG Hongtao, LUO Qingcai. Summary of Research and Application of Knowledge Graphs in Risk Management Field of Commercial Banks [J]. Computer Engineering and Applications, 2022, 58(19): 37-52. |
[11] | CHEN Yuting, LIU Xuhong, LIU Xiulei. Research on Entity Relation Extraction Based on Distant Supervision in Bidding Field [J]. Computer Engineering and Applications, 2020, 56(17): 243-250. |
[12] | WANG Yuan, PENG Chenhui, WANG Zhiqiang, FAN Qiang, YAO Yiyang, HUA Zhaoyun. Application of Knowledge Graph in Full-Service Unified Data Center of National Grid [J]. Computer Engineering and Applications, 2019, 55(15): 104-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||