Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (9): 30-47.DOI: 10.3778/j.issn.1002-8331.2309-0204

• Research Hotspots and Reviews • Previous Articles     Next Articles

Research Progress of Image Style Transfer Based on Neural Network

LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang   

  1. College of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Online:2024-05-01 Published:2024-04-29

基于神经网络的图像风格迁移研究进展

廉露,田启川,谭润,张晓行   

  1. 北京建筑大学 电气与信息工程学院,北京 100044

Abstract: Image style transfer is the process of remapping the content of a specified image with a style image, which is a research hotspot in the field of artificial intelligence computer vision. Traditional image style transfer methods are mainly based on the synthesis of physical and texture techniques, and the style transfer effect is rough and less robust. With the emergence of image datasets and the proposal of various deep learning model networks, many models and algorithms for image style transfer have emerged. This paper analyzes the current status of image style transfer research, combs the development of image style transfer and the latest research progress, and gives the future research directions of image style transfer through comparative analysis.

Key words: image style transfer, deep learning, convolutional neural network, attention mechanism

摘要: 图像风格迁移是用风格图像对指定图像的内容进行重映射的过程,是人工智能计算机视觉领域中的一个研究热点。传统的图像风格迁移方法主要基于物理、纹理技术的合成,风格迁移效果较为粗糙并且鲁棒性较差,随着图像数据集的出现和各种深度学习模型网络的提出,涌现了许多图像风格迁移的模型和算法。通过对图像风格迁移研究现状的分析,梳理了图像风格迁移的发展脉络和最新的研究进展,并通过对比分析给出了图像风格迁移未来的研究方向。

关键词: 图像风格迁移, 深度学习, 卷积神经网络, 注意力机制