Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (8): 31-45.DOI: 10.3778/j.issn.1002-8331.2307-0133
• Research Hotspots and Reviews • Previous Articles Next Articles
WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao
Online:
2024-04-15
Published:
2024-04-15
汪维泰,王晓强,李雷孝,陶乙豪,林浩
WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction[J]. Computer Engineering and Applications, 2024, 60(8): 31-45.
汪维泰, 王晓强, 李雷孝, 陶乙豪, 林浩. 时空图神经网络在交通流预测研究中的构建与应用综述[J]. 计算机工程与应用, 2024, 60(8): 31-45.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2307-0133
[1] HAN L, DU B, SUN L, et al. Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 547-555. [2] LI Z, LI L, PENG Y, et al. A two-stream graph convolutional neural network for dynamic traffic flow forecasting[C]//Proceedings of the 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), 2020: 355-362. [3] PAN Z, LIANG Y, WANG W, et al. Urban traffic prediction from spatio-temporal data using deep meta learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 1720-1730. [4] 刘宜成, 李志鹏, 吕淳朴, 等.基于动态时间调整的时空图卷积路网交通流量预测[J].交通运输系统工程与信息, 2022, 22(3): 147-157. LIU Y C, LI Z P, LV C P, et al. Network-wide traffic flow prediction research based on dtw algorithm spatial-temporal graph convolution[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 147-157. [5] SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30(3): 83-98. [6] GENG X, LI Y, WANG L, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 3656-3663. [7] SHAO W, JIN Z, WANG S, et al. Long-term spatio-temporal forecasting via dynamic multiple-graph attention[J]. arXiv: 2204.11008, 2022. [8] LI M, ZHU Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 4189-4196. [9] ZHANG W, ZHU F, LV Y, et al. AdapGL: an adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks[J]. Transportation Research Part C: Emerging Technologies, 2022, 139: 103659. [10] CHAI D, WANG L, YANG Q. Bike flow prediction with multi-graph convolutional networks[C]//Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2018: 397-400. [11] JIN G, XI Z, SHA H, et al. Deep multi-view graph-based network for citywide ride?hailing demand prediction[J]. Neurocomputing, 2022, 510: 79-94. [12] WU Z, PAN S, LONG G, et al. Graph wavenet for deep spatial-temporal graph modeling[J]. arXiv:1906.00121, 2019. [13] LI Y, YU R. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[J]. arXiv:1707.01926, 2017. [14] WU Z, PAN S, LONG G, et al. Connecting the dots: multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020: 753-763. [15] 王杨, 郑津, 刘影, 等.基于自适应门控图神经网络的交通流预测[J].计算机应用研究, 2022, 39(8): 2306-2310. WANG Y, ZHENG J, LIU Y, et al. Traffic flow prediction based on adaptive gated graph neural network [J]. Application Research of Computers, 2022, 39(8): 2306-2310. [16] SHEN Y, LI L, XIE Q, et al. A two-tower spatial-temporal graph neural network for traffic speed prediction[C]//Advances in Knowledge Discovery and Data Mining: 26th Pacific-Asia Conference, Chengdu, May 16-19, 2022. Cham: Springer International Publishing, 2022: 406-418. [17] SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 914-921. [18] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, October 5-9, 2015: 234-241. [19] YU B, YIN H, ZHU Z. ST-UNet: a spatio-temporal u-network for graph-structured time series modeling[J]. arXiv:1903. 05631, 2019. [20] LEI X, MEI H, SHI B, et al. Modeling network-level traffic flow transitions on sparse data[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022: 835-845. [21] FANG Z, LONG Q, SONG G, et al. Spatial-temporal graph ode networks for traffic flow forecasting[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 364-373. [22] SUN J, LI J, WU C, et al. Ada-STNet: a dynamic AdaBoost spatio-temporal network for traffic flow prediction[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022: 5478-5482. [23] XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[J]. arXiv:1810.00826, 2018. [24] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems, 2016. [25] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv: 1409.0473, 2014. [26] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017. [27] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the International Conference on Machine Learning, 2017: 1263-1272. [28] GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 922-929. [29] ROY A, ROY K K, ALI A A, et al. Unified spatio-temporal modeling for traffic forecasting using graph neural network[C]//Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), 2021: 1-8. [30] HYNDMAN R J. A brief history of forecasting competitions[J]. International Journal of Forecasting, 2020, 36(1): 7-14. [31] MAKRIDAKIS S, SPILIOTIS E, ASSIMAKOPOULOS V. Statistical and machine learning forecasting methods: concerns and ways forward[J]. PloS One, 2018, 13(3): e0194889. [32] SEN R, YU H F, DHILLON I S. Think globally, act locally: a deep neural network approach to high-dimensional time series forecasting[C]// Advances in Neural Information Processing Systems, 2019. [33] SALINAS D, FLUNKERT V, GASTHAUS J, et al. DeepAR: probabilistic forecasting with autoregressive recurrent networks[J]. International Journal of Forecasting, 2020, 36(3): 1181-1191. [34] YOUNG T, HAZARIKA D, PORIA S, et al. Recent trends in deep learning based natural language processing[J]. IEEE Computational Intelligence Magazine, 2018, 13(3): 55-75. [35] RANGAPURAM S S, SEEGER M W, GASTHAUS J, et al. Deep state space models for time series forecasting[C]//Advances in Neural Information Processing Systems, 2018. [36] WANG Y, SMOLA A, MADDIX D, et al. Deep factors for forecasting[C]//Proceedings of the International Conference on Machine Learning, 2019: 6607-6617. [37] LIM B, ZOHREN S, ROBERTS S. Recurrent neural filters: learning independent bayesian filtering steps for time series prediction[C]//Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), 2020: 1-8. [38] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166. [39] HOCHREITER S, BENGIO Y, FRASCONI P, et al. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies[M]//A field guide to dynamical recurrent networks. Hoboken: Wiley-IEEE Press, 2001:?237-243. [40] HUANG L, WU L, ZHANG J, et al. Dynamic relation discovery and utilization in multi-entity time series forecasting[J]. arXiv:2202.10586, 2022. [41] KAN J, HU K, HAGENBUCHNER M, et al. Sign language translation with hierarchical spatio-temporal graph neural network[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 3367-3376. [42] SIMEUNOVI? J, SCHUBNEL B, ALET P J, et al. Spatio-temporal graph neural networks for multi-site PV power forecasting[J]. IEEE Transactions on Sustainable Energy, 2021, 13(2): 1210-1220. [43] NICOLICIOIU A, DUTA I, LEORDEANU M. Recurrent space-time graph neural networks[C]//Advances in Neural Information Processing Systems, 2019. [44] CHEN C, LI K, TEO S G, et al. Gated residual recurrent graph neural networks for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 485-492. [45] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [46] LAI G, CHANG W C, YANG Y, et al. Modeling long-and short-term temporal patterns with deep neural networks[C]//Proceedings of the 41st international ACM SIGIR Conference on Research & Development in Information Retrieval, 2018: 95-104. [47] SHEN L, LI Z, KWOK J. Timeseries anomaly detection using temporal hierarchical one-class network[C]//Advances in Neural Information Processing Systems, 2020: 13016-13026. [48] FRANCESCHI J Y, DIEULEVEUT A, JAGGI M. Unsupervised scalable representation learning for multivariate time series[C]//Advances in Neural Information Processing Systems, 2019. [49] HE Y, ZHAO J. Temporal convolutional networks for anomaly detection in time series[J]. Journal of Physics: Conference Series, 2019 (4): 042050. [50] YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[J]. arXiv:1709.04875, 2017. [51] ZHENG C, FAN X, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 1234-1241. [52] LI Q, YANG X, WANG Y, et al. Spatial-temporal traffic modeling with a fusion graph reconstructed by tensor decomposition[J]. arXiv:2212.05653, 2022. [53] WU Z, ZHENG D, PAN S, et al. TraverseNet: unifying space and time in message passing for traffic forecasting[J]. arXiv:2109.02474, 2021. [54] JIN G, LI F, ZHANG J, et al. Automated dilated spatio-temporal synchronous graph modeling for traffic prediction[J]. arXiv:2207.10830, 2022. [55] WANG T, CHEN J, LYU J, et al. Synchronous spatiotemporal graph transformer: a new framework for traffic data prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10589-10599. [56] LI H, JIN D, LI X, et al. Multi-task synchronous graph neural networks for traffic spatial-temporal prediction[C]//Proceedings of the 29th International Conference on Advances in Geographic Information Systems, 2021: 137-140. [57] FANG Y, QIN Y, LUO H, et al. CDGNet: a cross-time dynamic graph-based deep learning model for traffic forecasting[J]. arXiv:2112.02736, 2021. [58] Kapoor A, BEN X, LIU L, et al. Examining covid-19 forecasting using spatio-temporal graph neural networks[J]. arXiv:2007.03113, 2020. [59] ZHANG X, HUANG C, XU Y, et al. Traffic flow forecasting with spatial-temporal graph diffusion network[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 15008-15015. [60] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(3): 211-234. [61] 李斐轩.基于图神经网络的短时交通流预测技术研究[J].信息系统工程, 2023(6): 12-15. LI F X. Research on short-term traffic flow prediction technology based on graph neural networks[J]. Engineering of Information Systems, 2023(6): 12-15. [62] XIA M, JIN D, CHEN J. Short-term traffic flow prediction based on graph convolutional networks and federated learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(1): 1191-1203. [63] CHEN Z, LU Z, CHEN Q, et al. Spatial-temporal short-term traffic flow prediction model based on dynamical-learning graph convolution mechanism[J]. Information Sciences, 2022, 611: 522-539. [64] JIANG Y, FAN J, LIU Y, et al. Deep graph Gaussian processes for short-term traffic flow forecasting from spatiotemporal data[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 20177-20186. [65] TANG C, SUN J, SUN Y. Dynamic spatial-temporal graph attention graph convolutional network for short-term traffic flow forecasting[C]//Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020: 1-5. [66] JIANG J, HAN C, ZHAO W X, et al. PDFormer: propagation delay-aware dynamic long-range transformer for traffic flow prediction[J]. arXiv:2301.07945, 2023. [67] ZHONG W, MALLICK T, MEIDANI H, et al. Explainable graph pyramid autoformer for long-term traffic forecasting[J]. arXiv:2209.13123, 2022. [68] 齐涛. 基于图卷积和深度学习的交通流预测算法研究[D]. 无锡: 江南大学, 2022. QI T. Research on traffic flow prediction algorithm based on graph convolution and deep learning[D]. Wuxi: Jiangnan University, 2022. [69] PENG H, DU B, LIU M, et al. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning[J]. Information Sciences, 2021, 578: 401-416. [70] QI X, MEI G, TU J, et al. A deep learning approach for long-term traffic flow prediction with multifactor fusion using spatiotemporal graph convolutional network[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8): 8687-8700. [71] FANG Y, QIN Y, LUO H, et al. Spatio-temporal meets wavelet: disentangled traffic flow forecasting via efficient spectral graph attention network[J]. arXiv:2112.02740, 2021. [72] LI M, TONG P, LI M, et al. Traffic flow prediction with vehicle trajectories[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 294-302. [73] LEI B, HUANG S, DING C, et al. Efficient traffic state forecasting using spatio-temporal network dependencies: a sparse graph neural network approach[J]. arXiv:2211.03033, 2022. [74] HUI B, YAN D, CHEN H, et al. TrajNet: a trajectory-based deep learning model for traffic prediction[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 716-724. [75] ZHOU Z, LIN G, YANG K, et al. GReTo: remedying dynamic graph topology-task discordance via target homophily[C]//Proceedings of the Eleventh International Conference on Learning Representations, 2023. [76] ORESHKIN B N, CARPOV D, CHAPADOS N, et al. N-BEATS: neural basis expansion analysis for interpretable time series forecasting[J]. arXiv: 1905.10437, 2019. [77] ORESHKIN B N, AMINI A, COYLE L, et al. FC-GAGA: fully connected gated graph architecture for spatio-temporal traffic forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 9233-9241. |
[1] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[2] | QIU Yunfei, WANG Yifan. Multi-Level 3D Point Cloud Completion with Dual-Branch Structure [J]. Computer Engineering and Applications, 2024, 60(9): 272-282. |
[3] | YE Bin, ZHU Xingshuai, YAO Kang, DING Shangshang, FU Weiwei. Binocular Depth Measurement Method for Desktop Interaction Scene [J]. Computer Engineering and Applications, 2024, 60(9): 283-291. |
[4] | WANG Cailing, YAN Jingjing, ZHANG Zhidong. Review on Human Action Recognition Methods Based on Multimodal Data [J]. Computer Engineering and Applications, 2024, 60(9): 1-18. |
[5] | LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang. Research Progress of Image Style Transfer Based on Neural Network [J]. Computer Engineering and Applications, 2024, 60(9): 30-47. |
[6] | YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(9): 65-78. |
[7] | ZHANG Junsan, XIAO Sen, GAO Hui, SHAO Mingwen, ZHANG Peiying, ZHU Jie. Multi-Task Graph Recommendation Algorithm Based on Neighborhood Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 172-180. |
[8] | SONG Jianping, WANG Yi, SUN Kaiwei, LIU Qilie. Short Text Classification Combined with Hyperbolic Graph Attention Networks and Labels [J]. Computer Engineering and Applications, 2024, 60(9): 188-195. |
[9] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[10] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[11] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[12] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[13] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[14] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
[15] | JIANG Liang, ZHANG Cheng, WEI Dejian, CAO Hui, DU Yuzheng. Deep Learning in Aided Diagnosis of Osteoporosis [J]. Computer Engineering and Applications, 2024, 60(7): 26-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||