[1] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[2] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[3] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[5] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington State, 2020: 1-10.
[6] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[7] GLENN J. Yolov5[EB/OL].(2021-01) https://github.com/ultralytics/yolov5.
[8] 马金林, 张裕, 马自萍, 等. 轻量化神经网络卷积设计研究进展[J]. 计算机科学与探索, 2022, 16(3): 512-528.
MA J L, ZHANG Y, MA Z P, et al. Research progress of lightweight neural network convolution design[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 512-528.
[9] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[10] YU J, JIANG Y, WANG Z, et al. Unitbox: an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia, 2016: 516-520.
[11] SONG G, LIU Y, WANG X. Revisiting the sibling head in object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11563-11572.
[12] QIAO L, ZHAO Y, LI Z, et al. DeFRCN: decoupled faster R-CNN for few-shot object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 8681-8690.
[13] LI Y, SHEN Z, LI J, et al. A deep learning method based on SRN-YOLO for forest fire detection[C]//2022 5th International Symposium on Autonomous Systems (ISAS), 2022: 1-6.
[14] WU Y, CHEN Y, YUAN L, et al. Rethinking classification and localization for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10186-10195.
[15] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[16] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[17] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 7263-7271.
[18] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 91-99.
[19] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636.
[20] DUAN K, BAI S, XIE L, et al. Centernet: keypoint triplets for object detection[C]//Proceedings of the IEEE /CVF International Conference on Computer Vision, 2019: 6569-6578.
[21] ZHU C, HE Y, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 840-849.
[22] GE Z, LIU S, LI Z, et al. Ota: optimal transport assignment for object detection[C]//Proceedings of the IEEE /CVF Conference on Computer Vision and Pattern Recognition, 2021: 303-312.
[23] LI H, KADAV A, DURDANOVIC I, et al. Pruning filters for efficient ConvNets[C]//5th International Conference on Learning Representations (ICLR), Toulon, 2017: 1-13.
[24] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[25] HUANG S, LU Z, CHENG R, et al. FaPN: feature-aligned pyramid network for dense image prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 864-873.
[26] HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[27] HE J, ERGANI S, MA X, et al. Alpha-IoU: a family of power intersection over union losses for bounding box regression[C]//Advances in Neural Information Processing Systems, 2021: 20230-20242.
[28] XU X, LIANG W, ZHAO J, et al. Tiny FCOS: a lightweight anchor-free object detection algorithm for mobile scenarios[J]. Mobile Networks and Applications, 2021, 26(6): 2219-2229.
[29] ZHANG H, ZHANG J, ZHANG Q, et al. RsaNet: recurrent slice-wise attention network for multiple sclerosis lesion segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2019: 411-419.
[30] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[31] WONG A, FAMUORI M, SHAFIEE M J, et al. Yolo nano: a highly compact you only look once convolutional neural network for object detection[C]//2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition (EMC2-NIPS), 2019: 22-25.
[32] WANG G, DING H, LI B, et al. Trident‐YOLO: improving the precision and speed of mobile device object detection[J]. IET Image Processing, 2022, 16(1): 145-157.
[33] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[C]//5th International Conference on Learning Representations (ICLR), Toulon, 2017: 1-13.
[34] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[35] HAN K, WANG Y, TIAN Q, et al. GhostNET: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589. |