[1] 许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25.
XU D G, WANG L, LI F. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8): 10-25.
[2] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2016 IEEE International Conference on Computer Vision, 2016.
[3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[4] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[5] 薛芳芳, 王月明, 李琦. 基于特征部位空间关系的牛日常行为识别[J]. 激光与光电子学进展, 2021, 58(22): 398-406.
XUE F F, WANG Y M, LI Q. Recognition of cattle daily behavior based on spatial relationship of feature parts[J]. Laser & Optoelectronics Progress, 2021, 58(22): 398-406.
[6] 刘锁兰, 田珍珍, 顾嘉晖, 等. 基于关键帧节点自适应分区与关联的行为识别算法[J]. 计算机应用研究, 2022, 39(11): 3498-3502.
LIU S L, TIAN Z Z, GU J H, et al. Action recognition based on adaptive partition and association of key-frame nodes[J]. Computer Engineering and Applications, 2022, 39(11): 3498-3502.
[7] 赵加坤, 孙俊, 韩睿, 等. 基于改进的Faster RCNN遥感图像目标检测[J]. 计算机应用与软件, 2022, 39(5): 192-196.
ZHAO J K, SUN J, HAN R, et al. Object detection based on improved Faster RCNN for remote sensing image[J]. Computer Applications and Software, 2022, 39(5): 192-196.
[8] 邢永鑫, 孙游东, 王天一. 基于改进SSD算法对奶牛的个体识别[J]. 计算机工程与应用, 2022, 58(2): 208-214.
XING Y X, SUN Y D, WANG T Y. Individual recognition of dairy cow based on improved SSD algorithm[J]. Computer Engineering and Applications, 2022, 58(2): 208-214.
[9] 刘涛, 张涛. 基于GhostNet-YOLOv4算法的印刷电路板缺陷检测[J]. 电子测量技术, 2022, 45(16): 61-70.
LIU T, ZHANG T. Defect detection of printed circuit board based on GhostNet-YOLOv4 algorithm[J]. Electronic Measurement Technology, 2022, 45(16): 61-70.
[10] 邝先验, 刘平. 基于改进YOLOv5s的复杂场景车辆检测方法[J]. 现代计算机, 2022, 28(7): 47-52.
KUANG X Y, LIU P. Vehicle detection method in complex scene based on improved YOLOv5s[J]. Modern Computer, 2022, 28(7): 47-52.
[11] 王媛, 温阳俊, 王艳萍, 等. 自然群体多性状表型缺失值预测方法的比较[J]. 南京农业大学学报, 2022, 45(2): 395-403.
WANG Y, WEN Y J, WANG Y P, et al. Comparison of prediction approaches for missing observations of multi-trait phenotypes in natural population[J]. Journal of Nanjing Agricultural University, 2022, 45(2): 395-403.
[12] 殷利平, 刘宵瑜, 盛绍学, 等. 基于SVM-BP神经网络的气象能见度数据缺失值预估[J]. 南京信息工程大学学报(自然科学版), 2021, 13(4): 494-501.
YIN L P, LIU X Y, SHENG S X, et al. SVM-BP neural network based meteorological visibility data filling[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2021, 13(4): 494-501.
[13] 吕勤学, 郭杜杜, 李心, 等. 基于优化随机森林算法的浮动车GPS数据插补模型[J]. 科学技术与工程, 2022, 22(4): 1656-1661.
LYU Q X, GUO D D, LI X, et al. GPS data interpolation model of floating car based on optimized random forest algorithm[J]. Science Technology and Engineering, 2022, 22(4): 1656-1661.
[14] 郭毅博, 牛猛, 王海迪, 等. 基于生成对抗网络的飞机燃油数据缺失值填充方法[J]. 浙江大学学报(理学版), 2021, 48(4): 402-409.
GUO Y B, NIU M, WANG H D, et al. An aircraft fuel data missing value filling method with generative adversarial network[J]. Journal of Zhejiang University (Science Edition), 2021, 48(4): 402-409.
[15] 王一旭, 肖小玲, 王鹏飞, 等. 改进YOLOv5s的小目标烟雾火焰检测算法[J]. 计算机工程与应用, 2022, 59(1): 72-81.
WANG Y X, XIAO X L, WANG P F, et al. Improved YOLOv5s small target smoke and fire detection algorithm[J]. Computer Engineering and Applications, 2022, 59(1): 72-81.
[16] 方洪波, 万广, 陈忠辉, 等. 基于改进YOLOv5s的离线手写数学符号识别[J]. 图学学报, 2022, 43(3): 387-395.
FANG H B, WAN G, CHEN Z H, et al. Offline handwriting mathematical symbol recognition based on improved YOLOv5s[J]. Journal of Graphics, 2022, 43(3): 387-395.
[17] 邢晋超, 潘广贞. 改进YOLOv5s的手语识别算法研究[J]. 计算机工程与应用, 2022, 58(16): 194-203.
XING J C, PAN G Z. Research on improved YOLOv5s sign language recognition algorithm[J]. Computer Engineering and Applications, 2022, 58(16): 194-203.
[18] 代牮, 赵旭, 李连鹏, 等. 基于改进YOLOv5的复杂背景红外弱小目标检测算法[J]. 红外技术, 2022, 44(5): 504-512.
DAI J, ZHAO X, LI L P, et al. Improved YOLOv5-based infrared dim-small target detection under complex background[J]. Infrared Technology, 2022, 44(5): 504-512.
[19] YOON J, JORDON J, SCHAAR M. GAIN: missing data imputation using generative adversarial nets[C]//Proceedings of the 35th International Conference on Machine Learning, 2018.
[20] 刘科研, 周方泽, 周晖, 等. 基于改进生成对抗网络的台区采集数据修复[J]. 电网技术, 2022, 46(8): 3231-3240.
LIU K Y, ZHOU F Z, ZHOU H, et al. Missing data imputation in transformer district based on improved generative adversarial network[J]. Power System Technology, 2022, 46(8): 3231-3240. |