[1] SAEEDI EMADI H, MAZINANI S M. A novel anomaly detection algorithm using DBSCAN and SVM in wireless sensor networks[J]. Wireless Personal Communications, 2018, 98(2): 2025-2035.
[2] WANG M, DENG W. Deep face recognition with clustering based domain adaptation[J]. Neurocomputing, 2020, 393: 1-14.
[3] HOU H, DING S, XU X. A deep clustering by multi-level feature fusion[J]. International Journal of Machine Learning and Cybernetics, 2022, 13: 2813-2823.
[4] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967: 281-297.
[5] 彭长根, 高婷, 刘惠篮, 等. 面向机器学习模型的基于PCA的成员推理攻击[J]. 通信学报, 2022, 43(1): 149-160.
PENG C G, GAO T, LIU H L, et al. PCA-based membership inference attack for machine learning models[J]. Journal on Communications, 2022, 43(1): 149-160.
[6] SUN L, MA C, CHEN Y, et al. Low rank component induced spatial-spectral kernel method for hyperspectral image classification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(10): 3829-3842.
[7] TURCHETTI C, FALASCHETTI L. A manifold learning approach to dimensionality reduction for modeling data[J]. Information Sciences, 2019, 491: 16-29.
[8] ZHOU S, XU H, ZHENG Z, et al. A comprehensive survey on deep clustering: taxonomy, challenges, and future directions[J]. arXiv:2206.07579, 2022.
[9] 陶文彬, 钱育蓉, 张伊扬, 等. 基于自编码器的深度聚类算法综述[J]. 计算机工程与应用, 2022, 58(18): 16-25.
TAO W B, QIAN Y R, ZHANG Y Y, et al. Survey of deep clustering algorithm based on autoencoder[J]. Computer Engineering and Applications, 2022, 58(18): 16-25.
[10] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems, 2006: 153-160.
[11] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013.
[12] XIE J, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C]//Proceedings of the 33rd International Conference on Machine Learning, 2016: 478-487.
[13] YANG J, PARIKH D, BATRA D. Joint unsupervised learning of deep representations and image clusters[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 5147-5156.
[14] JI X, HENRIQUES J F, VEDALDI A. Invariant information clustering for unsupervised image classification and segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 9865-9874.
[15] HUANG J, GONG S, ZHU X. Deep semantic clustering by partition confidence maximisation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8849-8858.
[16] GUO X, LIU X, ZHU E, et al. Deep clustering with convolutional autoencoders[C]//Proceedings of the 24th International Conference on Neural Information Processing. Cham: Springer, 2017: 373-382.
[17] GUO X, ZHU E, LIU X, et al. Deep embedded clustering with data augmentation[C]//Proceedings of the 10th Asian Conference on Machine Learning, 2018: 550-565.
[18] CHEN P, LIU S, JIA J. Jigsaw clustering for unsupervised visual representation learning[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 11526-11535.
[19] GIDARIS S, SINGH P, KOMODAKIS N. Unsupervised representation learning by predicting image rotations[J]. arXiv:1803.07728, 2018.
[20] MISRA I, MAATEN L. Self-supervised learning of pretext-invariant representations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6707-6717.
[21] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 1597-1607.
[22] ZELNIK-MANOR L, PERONA P. Self-tuning spectral clustering[C]//Advances in Neural Information Processing Systems, 2004: 1601-1608.
[23] CAI D, HE X, WANG X, et al. Locality preserving nonnegative matrix factorization[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligence, 2009: 1010-1015.
[24] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11: 3371-3408.
[25] SCHERER D, MüLLER A, BEHNKE S. Evaluation of pooling operations in convolutional architectures for object recognition[C]//Proceedings of the 20th International Conference on Artificial Neural Networks. Berlin, Heidelberg: Springer, 2010: 92-101.
[26] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv:1511.06434, 2015.
[27] PATACCHIOLA M, STORKEY A J. Self-supervised relational reasoning for representation learning[C]//Advances in Neural Information Processing Systems 33, 2020: 4003-4014.
[28] GOWDA K C, KRISHNA G. Agglomerative clustering using the concept of mutual nearest neighbourhood[J]. Pattern Recognition, 1978, 10(2): 105-112.
[29] CAI Y, ZHANG Z, CAI Z, et al. Graph convolutional subspace clustering: a robust subspace clustering framework for hyperspectral image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(5): 4191-4202.
[30] CHANG J, WANG L, MENG G, et al. Deep adaptive image clustering[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 5879-5887.
[31] WU J, LONG K, WANG F, et al. Deep comprehensive correlation mining for image clustering[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 8150-8159.
[32] YU Y, CHAN K H R, YOU C, et al. Learning diverse and discriminative representations via the principle of maximal coding rate reduction[C]//Advances in Neural Information Processing Systems 33, 2020: 9422-9434. |