Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (23): 28-48.DOI: 10.3778/j.issn.1002-8331.2402-0087
• Research Hotspots and Reviews • Previous Articles Next Articles
LIU Haichao, SONG Lijuan
Online:
2024-12-01
Published:
2024-11-29
刘海超,宋丽娟
LIU Haichao, SONG Lijuan. Review of Feature Fusion Techniques for Multimodal MRI Brain Tumor Segmentation Methods[J]. Computer Engineering and Applications, 2024, 60(23): 28-48.
刘海超, 宋丽娟. 多模态MRI脑肿瘤分割方法的特征融合技术综述[J]. 计算机工程与应用, 2024, 60(23): 28-48.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2402-0087
[1] BOROLE V Y, NIMBHORE S S, KAWTHEKAR D S S. Image processing techniques for brain tumor detection: a review[J]. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 2015, 4(5): 2. [2] KUMAR S S, MONI R S, RAJEESH J. Automatic segmentation of liver and tumor for CAD of liver[J]. Journal of Advances in Information Technology, 2011, 2(1): 63-70. [3] GIBBS P, BUCKLEY D L, BLACKBAND S J, et al. Tumour volume determination from MR images by morphological segmentation[J]. Physics in Medicine & Biology, 1996, 41(11): 2437. [4] LI Q, BAI K X, ZHAO L, et al. Progresss and challenges of MRI brain tumor image segmentation[J]. Journal of Image and Graphics, 2020, 25(3): 419-431. [5] CHEN L, WU Y, DSOUZA A M, et al. MRI tumor segmentation with densely connected 3D CNN[C]//Proceedings of theMedical Imaging 2018: Image Processing, 2018: 357-364. [6] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, October 5-9, 2015. Cham: Springer International Publishing, 2015: 234-241. [7] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop (DLMIA 2018), and 8th International Workshop (ML-CDS 2018), Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018. Cham: Springer International Publishing, 2018: 3-11. [8] MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Conference on 3D Vision (3DV), 2016: 565-571. [9] KAMNITSAS K, FERRANTE E, PARISOT S, et al. DeepMedic for brain tumor segmentation[C]//Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Second International Workshop (BrainLes 2016), with the Challenges on BraTS, ISLES and mTOP 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016. Cham: Springer International Publishing, 2016: 138-149. [10] LI W, WANG G, FIDON L, et al. On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task[C]//Proceedings of the 25th International Conference on Information Processing in Medical Imaging, Boone, NC, USA, June 25-30, 2017. Cham: Springer International Publishing, 2017: 348-360. [11] ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18(2): 203-211. [12] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1106-1114. [13] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv: 1409. 1556, 2014. [14] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [15] IANDOLA F, MOSKEWICZ M, KARAYEV S, et al. DenseNet: implementing efficient convnet descriptor pyramids[J]. arXiv: 1404.1869, 2014. [16] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [17] ARUNKUMAR N, MOHAMMED M A, ABD GHANI M K, et al. K-means clustering and neural network for object detecting and identifying abnormality of brain tumor[J]. Soft Computing, 2019, 23: 9083-9096. [18] SRINIVAS B, SASIBHUSHANA R G. Performance evaluation of fuzzy C means segmentation and support vector machine classification for MRI brain tumor[C]//Proceedings of the Soft Computing for Problem Solving(SocProS 2017), Bhubaneswar, India, 2017: 355-367. [19] MYRONENKO A. 3D MRI brain tumor segmentation using autoencoder regularization[C]//Proceedings of theBrainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop (BrainLes 2018), Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018. Cham: Springer International Publishing, 2019: 311-320. [20] AHMAD B, SUN J, YOU Q, et al. Brain tumor classification using a combination of variational autoencoders and generative adversarial networks[J]. Biomedicines, 2022, 10(2): 223. [21] ALDHAHAB A, IBRAHIM S, MIKHAEL W B. Stacked sparse autoencoder and softmax classifier framework to classify MRI of brain tumor images[J]. International Journal of Intelligent Engineering & Systems, 2020, 13(3): 12. [22] 刘鹏, 刘伟峰, 唐晓英. 使用深度学习方法的脑肿瘤图像分割综述[J]. 生命科学仪器, 2023, 21(3): 12-18. LIU P, LIU W F, TANG X Y. A review of brain tumor image segmentation using depth learning[J]. Life Science Instruments, 2023, 21(3): 12-18. [23] 孙康康, 陈伟, 李奇轩, 等.多模态MRI脑肿瘤图像分割方法研究进展[J].磁共振成像, 2023, 14(11): 164-169. SUN K K, CHEN W, LI Q X, et al. Research progress of multimodal MRI brain tumor image segmentation methods[J]. Chinese Journal of Magnetic Resonance Imaging, 2023, 14(11): 164-169. [24] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008. [25] 梁芳烜, 杨锋, 卢丽云, 等.基于卷积神经网络的脑肿瘤分割方法综述[J].计算机工程与应用, 2021, 57(7): 34-43. LIANG F X, YANG F, LU L Y, et al. Review of brain tumor segmentation methods based on convolutional neural networks[J]. Computer Engineering and Applications, 2021, 57(7): 34-43. [26] DEVUNOORU S, ALSADOON A, CHANDANA P W C, et al. Deep learning neural networks for medical image segmentation of brain tumours for diagnosis: a recent review and taxonomy[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12: 455-483. [27] DAS S, NAYAK G K, SABA L, et al. An artificial intelligence framework and its bias for brain tumor segmentation: a narrative review[J]. Computers in Biology and Medicine, 2022, 143: 105273. [28] RANJBARZADEH R, CAPUTO A, TIRKOLAEE E B, et al. Brain tumor segmentation of MRI images: a comprehensive review on the application of artificial intelligence tools[J]. Computers in Biology and Medicine, 2023, 152: 106405. [29] SHEHAB L H, FAHMY O M, GASSER S M, et al. An efficient brain tumor image segmentation based on deep residual networks (ResNets)[J]. Journal of King Saud University-Engineering Sciences, 2021, 33(6): 404-412. [30] LUU H M, PARK S H. Extending nnU-Net for brain tumor segmentation[C]//Proceedings of the International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021: 173-186. [31] MAJI D, SIGEDAR P, SINGH M. Attention Res-UNet with guided decoder for semantic segmentation of brain tumors[J]. Biomedical Signal Processing and Control, 2022, 71: 103077. [32] ZHANG W, YANG G, HUANG H, et al. ME‐Net: multi‐encoder net framework for brain tumor segmentation[J]. International Journal of Imaging Systems and Technology, 2021, 31(4): 1834-1848. [33] MARINOV Z, REI? S, KERSTING D, et al. Mirror U-Net: marrying multimodal fission with multi-task learning for semantic segmentation in medical imaging[J]. arXiv:2303. 07126, 2023. [34] LI Y, JIA F, QIN J. Brain tumor segmentation from multimodal magnetic resonance images via sparse representation[J]. Artificial Intelligence in Medicine, 2016, 73: 1-13. [35] ZHANG J, ZENG J, QIN P, et al. Brain tumor segmentation of multi-modality MR images via triple intersecting U-Nets[J]. Neurocomputing, 2021, 421: 195-209. [36] WANG Y, ZHANG Y, HOU F, et al. Modality-pairing learning for brain tumor segmentation[C]//Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop (BrainLes 2020), Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020. Cham: Springer International Publishing, 2021: 230-240. [37] FANG F, YAO Y, ZHOU T, et al. Self-supervised multi-modal hybrid fusion network for brain tumor segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(11): 5310-5320. [38] AZAD R, KHOSRAVI N, MERHOF D. SMU-Net: style matching U-Net for brain tumor segmentation with missing modalities[C]//Proceedings of the International Conference on Medical Imaging with Deep Learning, 2022: 48-62. [39] SHEN Y, GAO M. Brain tumor segmentation on MRI with missing modalities[C]//Proceedings of the Information Processing in Medical Imaging: 26th International Conference(IPMI 2019), Hong Kong, China, June 2-7, 2019. Cham: Springer International Publishing, 2019: 417-428. [40] ZHOU T, CANU S, VERA P, et al. Brain tumor segmentation with missing modalities via latent multi-source correlation representation[C]//Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2020), Lima, Peru, October 4-8, 2020. Cham: Springer International Publishing, 2020: 533-541. [41] SINGH G, PHOPHALIA A. Multimodal brain tumor segmentation using modified UNet architecture[C]//Proceedings of the International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021: 295-305. [42] ?I?EK ?, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI 2016), Athens, Greece, October 17-21, 2016. Cham: Springer International Publishing, 2016: 424-432. [43] RAHMAN M M, SADIQUE M S, TEMTAM A G, et al. Brain tumor segmentation using UNet-Context encoding network[C]//Proceedings of the International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021: 463-472. [44] ZHANG H, DANA K, SHI J, et al. Context encoding for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7151-7160. [45] WANG W, CHEN C, DING M, et al. TransBTS: multimodal brain tumor segmentation using transformer[C]//Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), Strasbourg, France, September 27-October 1, 2021. Cham: Springer International Publishing, 2021: 109-119. [46] XING Y Z, YUAN J, LIU Q, et al. MM-UNet: multi-attention mechanism and multi?scale feature fusion UNet for tumor image segmentation[C]//Proceedings of the 2nd Asia Conference on Algorithms, Computing and Machine Learning, 2023: 253-257. [47] DING Y, GONG L, ZHANG M, et al. A multi-path adaptive fusion network for multimodal brain tumor segmentation[J]. Neurocomputing, 2020, 412: 19-30. [48] HU X, LUO W, HU J, et al. Brain SegNet: 3D local refinement network for brain lesion segmentation[J]. BMC Medical Imaging, 2020, 20: 1-10. [49] SHENG X, ZHANG Y. Multimodal brain tumor image segmentation based on 3D CTrans U-Net: replacing skip connection with channel-wise attention module[C]//Proceedings of the 8th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), 2023: 538-544. [50] PEI L, LIU Y. Multimodal brain tumor segmentation using a 3D ResUNet in BraTS 2021[C]//Proceedings of the International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021: 315-323. [51] 夏景明, 谈玲, 梁颖. LMD-UNet网络在脑肿瘤多模态MRI图像分割中的应用[J].中国生物医学工程学报, 2023, 42(4): 431-441. XIA J M, TAN L, LIANG Y. Application of LMD-UNet network in multimodal MRI image segmentation of brain tumor[J]. Chinese Journal of Biomedical Engineering, 2023, 42(4): 431-441. [52] ZHOU X, LI X, HU K, et al. ERV-Net: an efficient 3D residual neural network for brain tumor segmentation[J]. Expert Systems with Applications, 2021, 170: 114566. [53] ISLAM K T, WIJEWICKREMA S, O’LEARY S. A deep learning framework for segmenting brain tumors using MRI and synthetically generated CT images[J]. Sensors, 2022, 22(2): 523. [54] 丁熠, 郑伟, 耿技, 等. 基于多层级并行神经网络的多模态脑肿瘤图像分割框架[J].中国图象图形学报, 2023, 28(7): 2182-2194. DING Y, ZHENG W, GENG J, et al. Multi-level parallel neural networks based multimodal human brain tumor image segmentation framework[J]. Journal of Image and Graphics, 2023, 28(7): 2182-2194. [55] JIANG Y, ZHANG Y, LIN X, et al. SwinBTS: a method for 3D multimodal brain tumor segmentation using swin transformer[J]. Brain Sciences, 2022, 12(6): 797. [56] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022. [57] HATAMIZADEH A, NATH V, TANG Y, et al. Swin UNETR: Swin transformers for semantic segmentation of brain tumors in mri images[C]//Proceedings of the International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021: 272-284. [58] YANG Y, WEI S, ZHANG D, et al. Hierarchical and global modality interaction for brain tumor segmentation[C]//Proceedings of the International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021: 441-450. [59] SHEN L, ZHANG Y, WANG Q, et al. Feature interaction network based on hierarchical decoupled convolution for 3D medical image segmentation[J]. Plos One, 2023, 18(7): e0288658. [60] GAO H, MIAO Q, MA D, et al. Deep mutual learning for brain tumor segmentation with the fusion network[J]. Neurocomputing, 2023, 521: 213-220. [61] HUANG Z, ZHAO Y, LIU Y, et al. GCAUNet: a group cross-channel attention residual UNet for slice based brain tumor segmentation[J]. Biomedical Signal Processing and Control, 2021, 70: 102958. [62] CHOI Y, AL-MASNI M A, KIM D H. 3D CMM-Net with deeper encoder for semantic segmentation of brain tumors in BraTS2021 challenge[C]//Proceedings of the International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021: 333-343. [63] LI Z, SHEN Z, WEN J, et al. Automatic brain tumor segmentation using multi-scale features and attention mechanism[C]//Proceedings of the International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021: 216-226. [64] CHANG Y, ZHENG Z, SUN Y, et al. DPAFNet: a residual dual-path attention-fusion convolutional neural network for multimodal brain tumor segmentation[J]. Biomedical Signal Processing and Control, 2023, 79: 104037. [65] 张建新, 刘冬伟, 张睦卿, 等.多尺度非局部自注意力MRI脑肿瘤分割网络[J].计算机系统应用, 2024, 33(2): 143-150. ZHANG J X, LIU D W, ZHANG M Q, et al. MRI brain tumor segmentation network using multi-scale non-local self-attention[J]. Computer Systems and Applications, 2024, 33(2): 143-150. [66] 宋建丽, 吕晓琪, 谷宇.语义流引导采样结合注意力机制的脑肿瘤图像分割[J].光学精密工程, 2024, 32(4): 565-577. SONG J L, LYU X Q, GU Y. Brain tumor image segmentation based on semantic flow guided sampling and attention mechanism[J]. Optics and Precision Engineering, 2024, 32(4): 565-577. [67] WANG Y, CHEN J, BAI X. Gradient-assisted deep model for brain tumor segmentation by multi-modality MRI volumes[J]. Biomedical Signal Processing and Control, 2023, 85: 105066. [68] WU Q, PEI Y, CHENG Z, et al. SDS-Net: a lightweight 3D convolutional neural network with multi-branch attention for multimodal brain tumor accurate segmentation[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 17384-17406. [69] YANG H, SHEN Z, LI Z, et al. Combining global information with topological prior for brain tumor segmentation[C]//Proceedings of the International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021: 204-215. [70] GUAN X, YANG G, YE J, et al. 3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework[J]. BMC Medical Imaging, 2022, 22(1): 1-18. [71] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. [72] 许立君, 黎辉, 刘祖阳, 等. 3D-GA-UNet: 基于3D-Ghost卷积神经网络的脑胶质瘤MRI图像分割算法[J].计算机应用, 2024, 44(4): 1294-1302. XU L J, LI H, LIU Z Y, et al. 3D-GA-UNet: MRI image segmentation algorithm for glioma based on 3D-Ghost CNN[J].Journal of Computer Applications, 2024, 44(4): 1294-1302. [73] 李锵, 李瑞璇, 刘恒忻, 等. 循环分层解耦卷积和最大滤波的三维脑肿瘤图像分割[J]. 天津大学学报 (自然科学与工程技术版), 2024, 57(3): 223-233. LI Q, LI R X, LIU H X, et al. 3D brain tumor image segmentation based on recurrent hierarchical decoupled convolution and maximum filtering[J]. Journal of Tianjin University (Science and Technology), 2024, 57(3): 223-233. [74] LAN C, YU X, ZHANG L, et al. Brain tumor image segmentation based on improved Polyp-PVT[J]. Signal, Image and Video Processing, 2023, 17(8): 4019-4027. [75] WANG W, XIE E, LI X, et al. PVT v2: improved baselines with pyramid vision transformer[J]. Computational Visual Media, 2022, 8(3): 415-424. [76] LIU Y, MU F, SHI Y, et al. SF-Net: a multi-task model for brain tumor segmentation in multimodal MRI via image fusion[J]. IEEE Signal Processing Letters, 2022, 29: 1799-1803. [77] ZHANG Y, ZHONG P, JIE D, et al. Brain tumor segmentation from multi-modal MR images via ensembling UNets[J]. Frontiers in Radiology, 2021, 1: 704888. [78] ZHANG Y, WU J, LIU Y, et al. MI-UNet: multi-inputs UNet incorporating brain parcellation for stroke lesion segmentation from T1-weighted magnetic resonance images[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25(2): 526-535. [79] YE F, ZHENG Y, YE H, et al. Parallel pathway dense neural network with weighted fusion structure for brain tumor segmentation[J]. Neurocomputing, 2021, 425: 1-11. [80] 陈柏年, 韩雨童, 何涛, 等.基于级联动态注意力U-Net的脑肿瘤分割方法[J].计算机科学, 2023, 50(S2): 1031-1037. CHEN B N, HAN Y T, HE T, et al. Cascade dynamic attention U-Net based brain tumor segmentation[J]. Computer Science, 2023, 50(S2): 1031-1037. [81] HUANG H, YANG G, ZHANG W, et al. A deep multi-task learning framework for brain tumor segmentation[J]. Frontiers in Oncology, 2021, 11: 690244. [82] KAO P Y, SHAILJA S, JIANG J, et al. Improving patch-based convolutional neural networks for MRI brain tumor segmentation by leveraging location information[J]. Frontiers in Neuroscience, 2020, 13: 1449. [83] FONOV V S, ROSA-NETO P, COLLINS D L. 3D MRI brain tumour segmentation with autoencoder regularization and hausdorff distance loss function[C]//Proceedings of the International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021: 324-332. [84] SAUERESSIG C, BERKLEY A, MUNBODH R, et al. A joint graph and image convolution network for automatic brain tumor segmentation[C]//Proceedings of the International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021: 356-365. [85] FANG L, WANG X. Brain tumor segmentation based on the dual-path network of multi-modal MRI images[J]. Pattern Recognition, 2022, 124: 108434. [86] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. [87] PEIRIS H, CHEN Z, EGAN G, et al. Reciprocal adversarial learning for brain tumor segmentation: a solution to BraTS challenge 2021 segmentation task[C]//Proceedings of the International MICCAI Brainlesion Workshop. Cham: Springer International Publishing, 2021: 171-181. [88] MIYATO T, MAEDA S, KOYAMA M, et al. Virtual adversarial training: a regularization method for supervised and semi-supervised learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(8): 1979-1993. [89] 张睦卿, 韩雨童, 陈柏年, 等. 基于多尺度伪影生成对抗网络的磁共振成像脑肿瘤分割方法[J].光子学报, 2023, 52(8): 0817002. ZHANG M Q, HAN Y T, CHEN B N, et al. Magnetic resonance imaging brain tumor segmentation using multiscale ghost generative adversarial network[J]. Acta Photonica Sinica, 2023, 52(8): 0817002. [90] BAO Z, WANG Y, HUANG J, et al. Multi-modal brain image segmentation based on multi-encoder with hybrid lateral connection (MEHLC-Net)[C]//Proceedings of the 9th International Conference on Biomedical and Bioinformatics Engineering, 2022: 22-28. [91] ZHOU T, RUAN S, VERA P, et al. A Tri-attention fusion guided multi-modal segmentation network[J]. Pattern Recognition, 2022, 124: 108417. [92] ZHUANG Y, LIU H, SONG E, et al. A 3D cross-modality feature interaction network with volumetric feature alignment for brain tumor and tissue segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 27(1): 75-86. [93] ZHOU T, ZHU S. Uncertainty quantification and attention-aware fusion guided multi-modal MR brain tumor segmentation[J]. Computers in Biology and Medicine, 2023, 163: 107142. [94] ZHAO C, LIU K, CHEN W, et al. Multi-modality brain tumor segmentation network based on collaborative feature fusion[C]//Proceedings of the 2022 IEEE 17th Conference on Industrial Electronics and Applications, 2022: 1122-1127. [95] ZHOU T, CANU S, RUAN S. Fusion based on attention mechanism and context constraint for multi-modal brain tumor segmentation[J]. Computerized Medical Imaging and Graphics, 2020, 86: 101811. [96] LIU Y, MU F, SHI Y, et al. Brain tumor segmentation in multimodal MRI via pixel-level and feature-level image fusion[J]. Frontiers in Neuroscience, 2022, 16: 1000587. [97] 戴天虹, 宋洁绮. 基于多编码器的多模态MRI脑肿瘤分割[J]. 计算机科学, 2023, 50(S1): 509-514. DAI T H, SONG J Q. Multimodal MRI brain tumor segmentation based on multi-encoder architecture[J]. Computer Science, 2023, 50(S1): 509-514. [98] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542. [99] ZHANG G, ZHOU J, HE G, et al. Deep fusion of multi-modal features for brain tumor image segmentation[J]. Heliyon, 2023, 9(8). [100] SYAZWANY N S, NAM J H, LEE S C. MM-BiFPN: multi-modality fusion network with Bi-FPN for MRI brain tumor segmentation[J]. IEEE Access, 2021, 9: 160708-160720. [101] ZHANG Y, LI Z, LI H, et al. Prototype-driven and multi-expert integrated multi-modal MR brain tumor image segmentation[J]. arXiv:2307.12180, 2023. [102] ZHENG J, SHI F, ZHAO M, et al. Learning intra-inter-modality complementary for brain tumor segmentation[J]. Multimedia Systems, 2023, 29(6): 3771-3780. [103] ULLAH F, NADEEM M, ABRAR M, et al. Brain tumor segmentation from MRI images using handcrafted convolutional neural network[J]. Diagnostics, 2023, 13(16): 2650. [104] SUN Q, FANG N, LIU Z, et al. HybridCTrm: bridging CNN and transformer for multimodal brain image segmentation[J]. Journal of Healthcare Engineering, 2021, 2021: 7467261. [105] HUANG L, DENOEUX T, VERA P, et al. Evidence fusion with contextual discounting for multi-modality medical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 401-411. [106] HAMGHALAM M, LEI B, WANG T. Convolutional 3D to 2D patch conversion for pixel-wise glioma segmentation in MRI scans[C]//Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop (BrainLes 2019), Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019. Cham: Springer International Publishing, 2020: 3-12. [107] ZHANG S, ZHANG J, TIAN B, et al. Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medical image segmentation[J]. Medical Image Analysis, 2023, 83: 102656. [108] LIU Y, SHI Y, MU F, et al. Glioma segmentation-oriented multi-modal MR image fusion with adversarial learning[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(8): 1528-1531. [109] LIU Z, CHENG Y, TAN T, et al. MimicNet: mimicking manual delineation of human expert for brain tumor segmentation from multimodal MRIs[J]. Applied Soft Computing, 2023, 143: 110394. [110] ZHOU T, NOEUVEGLISE A, MODZELEWSKI R, et al. Prediction of brain tumor recurrence location based on multi-modal fusion and nonlinear correlation learning[J]. Computerized Medical Imaging and Graphics, 2023, 106: 102218. [111] JOYCE J M. Kullback-Leibler divergence[M]//International encyclopedia of statistical science. Berlin Heidelberg: Springer, 2011. [112] KONG L, ZHANG Y. Multi-modal brain tumor segmentation using cascaded 3D U-Net[C]//Proceedings of the 6th International Conference on Image, Vision and Computing (ICIVC), 2021: 129-133. [113] ABOUSSALEH I, RIFFI J, FAZAZY K E, et al. Efficient U-Net architecture with multiple encoders and attention mechanism decoders for brain tumor segmentation[J]. Diagnostics, 2023, 13(5): 872. [114] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520. [115] LIU H, NIE D, SHEN D, et al. Multimodal brain tumor segmentation using contrastive learning based feature comparison with monomodal normal brain images[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 118-127. [116] 刘万军, 姜岚, 曲海成, 等.融合CNN与Transformer的MRI脑肿瘤图像分割[J].智能系统学报, 2024(4): 1007- 1015. LIU W J, JIANG L, QU H C, et al. MRI brain tumor image segmentation by fusing CNN and Transformer[J]. CAAI Transactions on Intelligent Systems, 2024(4): 1007- 1015. [117] CHEN Y, CHEN J, WEI D, et al. OctopusNet: a deep learning segmentation network for multi-modal medical images[C]//Proceedings of the Multiscale Multimodal Medical Imaging: First International Workshop (MMMI 2019), Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019. Cham: Springer International Publishing, 2020: 17-25. [118] SUN J, PENG Y, GUO Y, et al. Segmentation of the multimodal brain tumor image used the multi-pathway architecture method based on 3D FCN[J]. Neurocomputing, 2021, 423: 34-45. [119] ZHUANG Y, LIU H, SONG E, et al. APRNet: A 3D anisotropic pyramidal reversible network with multi-modal cross-dimension attention for brain tissue segmentation in MR images[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(2): 749-761. [120] WU B, ZHANG F, XU L, et al. Modality preserving U-Net for segmentation of multimodal medical images[J]. Quantitative Imaging in Medicine and Surgery, 2023, 13(8): 5242. [121] 张鹏跃, 马巧梅. 跨模态融合的双注意力脑肿瘤分割算法[J].计算机系统应用, 2024, 33(1): 119-126. ZHANG P Y, MA Q M. Brain tumor segmentation algorithm based on cross-modal fusion dual attention[J]. Computer Systems Applications, 2024, 33(1): 119-126. [122] 张奕涵, 柏正尧, 尤逸琳, 等.自适应模态融合双编码器MRI脑肿瘤分割网络[J].中国图象图形学报, 2024, 29(3): 768-781. ZHANG Y H, BAI Z Y, YOU Y L, et al. Adaptive modal fusion dual encoder MRI brain tumor segmentation network[J]. Journal of Image and Graphics, 2024, 29(3): 768-781. [123] RANJBARZADEH R, BAGHERIAN KASGARI A, JAFARZADEH GHOUSHCHI S, et al. Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images[J]. Scientific Reports, 2021, 11(1): 10930. [124] ZHOU T. Modality-level cross-connection and attentional feature fusion based deep neural network for multi-modal brain tumor segmentation[J]. Biomedical Signal Processing and Control, 2023, 81: 104524. [125] ZHANG R, JIA S, ADAMU M J, et al. HMNet: hierarchical multi-scale brain tumor segmentation network[J]. Journal of Clinical Medicine, 2023, 12(2): 538. [126] YANG H, ZHOU T, ZHOU Y, et al. Flexible fusion network for multi-modal brain tumor segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(7): l3349-3359. [127] ZHU Z, HE X, QI G, et al. Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI[J]. Information Fusion, 2023, 91: 376-387. [128] LI X, MA S, XU J, et al. TranSiam: aggregating multi-modal visual features with locality for medical image segmentation[J]. Expert Systems with Applications, 2024, 237: 121574. [129] LIU Z, WEI J, LI R, et al. Learning multi-modal brain tumor segmentation from privileged semi-paired MRI images with curriculum disentanglement learning[J]. Computers in Biology and Medicine, 2023, 159: 106927. [130] XING Z H, YU L, WAN L, et al. NestedFormer: nested modality-aware transformer for brain tumor segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 140-150. [131] YU W, LUO M, ZHOU P, et al. Metaformer is actually what you need for vision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 10819-10829. [132] DING Y, YU X, YANG Y. RFNet: region-aware fusion network for incomplete multi-modal brain tumor segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3975-3984. [133] WANG Z, HONG Y. A2FSeg: adaptive multi-modal fusion network for medical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023: 673-681. [134] FENG X, GHIMIRE K, KIM D D, et al. Brain tumor segmentation for multi-modal MRI with missing information[J]. Journal of Digital Imaging, 2023, 36(5): 2075-2087. [135] KASLIWAL A, SAGARAM S, SRIVASTAVA L, et al. ReFuSeg: regularized multi-modal fusion for precise brain tumour segmentation[J]. arXiv:2308.13883, 2023. [136] ZHAO Z, YANG H, SUN J. Modality-adaptive feature interaction for brain tumor segmentation with missing modalities[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 183-192. [137] ZHU Y, WANG S, HU Y, et al. DRM-VAE: a dual residual multi variational auto-encoder for brain tumor segmentation with missing modalities[C]//Proceedings of the 2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE), 2021: 82-86. [138] ZHOU T. Feature fusion and latent feature learning guided brain tumor segmentation and missing modality recovery network[J]. Pattern Recognition, 2023, 141: 109665. [139] ZHANG Y, HE N, YANG J, et al. MmFormer: multimodal medical transformer for incomplete multimodal learning of brain tumor segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2022: 107-117. [140] HUANG Z, LIN L, CHENG P, et al. Multi-modal brain tumor segmentation via missing modality synthesis and modality-level attention fusion[J]. arXiv:2203.04586, 2022. [141] ZHOU T, CANU S, VERA P, et al. Feature-enhanced generation and multi-modality fusion based deep neural network for brain tumor segmentation with missing MR modalities[J]. Neurocomputing, 2021, 466: 102-112. [142] DIAO Y, LI F, LI Z. Joint learning-based feature reconstruction and enhanced network for incomplete multi-modal brain tumor segmentation[J]. Computers in Biology and Medicine, 2023, 163: 107234. [143] YANG H, SUN J, XU Z. Learning unified hyper-network for multi-modal MR image synthesis and tumor segmentation with missing modalities[J]. IEEE Transactions on Medical Imaging, 2023, 42(12): 3678-3689. [144] MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark (BraTS)[J]. IEEE Transactions on Medical Imaging, 2014, 34(10): 1993-2024. [145] BAKAS S, AKBARI H, SOTIRAS A, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features[J]. Scientific Data, 2017, 4(1): 1-13. [146] BAKAS S, REYES M, JAKAB A, et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BraTS challenge[J]. arXiv:1811.02629, 2018. |
[1] | CHEN Lei, XI Yimeng, LIU Libo. Survey on Video-Text Cross-Modal Retrieval [J]. Computer Engineering and Applications, 2024, 60(4): 1-20. |
[2] | DING Meirong, CHEN Hongye, ZENG Biqing. Cross-Modal Semantic Alignment and Information Refinement for Multi-Modal Sentiment Analysis [J]. Computer Engineering and Applications, 2024, 60(22): 114-125. |
[3] | GAO Yue, DAI Meng, ZHANG Qing. RGB-D Salient Object Detection Based on Multi-Modal Feature Interaction [J]. Computer Engineering and Applications, 2024, 60(2): 211-220. |
[4] | WANG Jiaqi, ZHANG Qi, HUANG Wei. Vehicle Detection of Multi-Modal Attention Fusion Under Different Illumination [J]. Computer Engineering and Applications, 2024, 60(16): 116-123. |
[5] | CHEN Youren, LI Yong, WEN Ming, SUN Chi. Research and Comprehensive Review on Multi-Modal Knowledge Graph Fusion Techniques [J]. Computer Engineering and Applications, 2024, 60(13): 36-50. |
[6] | LIU Wanjun, LIANG Linlin, QU Haicheng. Trans-RGBT:RGBT Object Tracking with Transformer [J]. Computer Engineering and Applications, 2024, 60(11): 84-94. |
[7] | ZHAO Hongwei, ZHENG Jiajun, ZHAO Xinxin, WANG Shengchun, LI Yidong. Rail Surface Defect Method Based on Bimodal-Modal Deep Learning [J]. Computer Engineering and Applications, 2023, 59(7): 285-293. |
[8] | LAI Li’na, MI Yu, ZHOU Longlong, RAO Jiyong, XU Tianyang, SONG Xiaoning. Survey About Generative Adversarial Network and Text-to-Image Synthesis [J]. Computer Engineering and Applications, 2023, 59(19): 21-39. |
[9] | ZHANG Chaoyue, ZHANG Rong. Spatio-Temporal Fusion Gait Recognition Method Combining Silhouette and Pose [J]. Computer Engineering and Applications, 2023, 59(16): 135-142. |
[10] | XIANG Deping, ZHANG Pu, XIANG Shiming, PAN Chunhong. Multi-Modal Meteorological Forecasting Based on Transformer [J]. Computer Engineering and Applications, 2023, 59(10): 94-103. |
[11] | DING Guohui, ZHANG Qi, FANG Shichao, LI Qing, SUN Xiaoyu, ZHANG Luxia, KONG Guilan. Review of Multi-Modal Retrieval in Medicine [J]. Computer Engineering and Applications, 2023, 59(1): 26-36. |
[12] | CHANG Shiying, HU Yan. Video Memorability Prediction Based on Multi-Modal Features Fusion [J]. Computer Engineering and Applications, 2022, 58(14): 219-226. |
[13] | DUAN Ganglong, WANG Yan, MA Xin, YANG Zeyang. Data Feature Selection Method and Empirical Study of Bank Customer Segmentation [J]. Computer Engineering and Applications, 2022, 58(11): 302-312. |
[14] | XU Zhijing, GAO Shan. Multi-Modal Emotion Recognition Based on Transformer-ESIM Attention Mechanism [J]. Computer Engineering and Applications, 2022, 58(10): 132-138. |
[15] | GUO Yanfen, CUI Zhe, YANG Zhipeng, PENG Jing, HU Jinrong. Research Progress of Medical Image Registration Technology Based on Deep Learning [J]. Computer Engineering and Applications, 2021, 57(15): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||