[1] 王子健, 王云艳, 武华轩. 基于改进YOLOX的遥感图像目标检测[J]. 扬州大学学报 (自然科学版), 2023, 26(5): 64-71.
WANG Z J, WANG Y Y, WU H X. Remote sensing image target detection based on improved YOLOX[J]. Journal of Yangzhou University (Natural Science Edition), 2023, 26(5): 64-71.
[2] CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467-13488.
[3] 胡俊, 顾晶晶, 王秋红. 基于遥感图像的多模态小目标检测[J]. 图学学报, 2022, 43(2): 197-204.
HU J, GU J J, WANG Q H. Multimodal small target detection based on remote sensing image[J]. Journal of Graphics, 2022, 43(2): 197-204.
[4] WANG C S, WANG Q, WU H R, et al. Low-altitude remote sensing opium poppy image detection based on modified YOLOv3[J]. Remote Sensing, 2021, 13(11): 2130.
[5] GOLDMAN E, HERZIG R, EISENSCHTAT A, et al. Precise detection in densely packed scenes[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5222-5231.
[6] SHI F B, LIU Y, WANG H Y. Target detection in remote sensing images based on multi-scale fusion faster rcnn[C]//Proceedings of the 35th Chinese Control and Decision Conference, 2023: 4043-4046.
[7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierar-chies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[8] TAN M X, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2019: 6105-6114.
[9] 赵加坤, 孙俊, 韩睿, 等. 基于改进的Faster Rcnn遥感图像目标检测[J]. 计算机应用与软件, 2022, 39(5): 192-196.
ZHAO J K, SUN J, HAN R, et al. Object detection based on improved Faster Rcnn for remote sensing image[J]. Computer Applications and Software, 2022, 39(5): 192-196.
[10] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[11] ZHOU L M, LI Y H, RAO X H, et al. Feature enhancement-based ship target detection method in optical remote sensing images[J]. Electronics, 2022, 11(4): 634.
[12] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004. 10934, 2020.
[13] XU X K, FENG Z J, CAO C Q, et al. An improved swin transformer-based model for remote sensing object detection and instance segmentation[J]. Remote Sensing, 2021, 13(23): 4779.
[14] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[15] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style convnets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742.
[16] YU Z P, HUANG H B, CHEN W J, et al. YOLO-facev2: a scale and occlusion aware face detector[J]. arXiv:2208.02019, 2022.
[17] TERVEN J, CORDOVA-ESPARZA D. A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond[J]. arXiv:2304.00501, 2023.
[18] SIMONYAN K, ZISSERMANA. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[19] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[20] CHENG G, HAN J W, ZHOU P C, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119-132.
[21] LONG Y, GONG Y P, XIAO Z F, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55: 2486-2498.
[22] ZHU H G, CHEN X G, DAI W Q, et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]//Proceedings of the 2015 IEEE International Conference on Image Processing, 2015: 3735-3739.
[23] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher flops for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[24] MA N N, ZHANG X Y, ZHENG H T, et al. Shufflenet v2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision, 2018: 116-131.
[25] CHEN H T, WANG Y H, GUO J Y, et al. VanillaNet: the power of minimalism in deep learning[J]. arXiv:2305. 12972, 2023.
[26] ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with bi-level routing attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10323-10333.
[27] CUI C, GAO T Q, WEI S Y, et al. PP-LCNet: a lightweight cpu convolutional neural network[J]. arXiv:2109.15099, 2021.
[28] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[29] ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8514-8523.
[30] TANG S Y, FANG Y N, ZHANG S. HIC-YOLOv5: improved YOLOv5 for small object detection[J]. arXiv:2309.16393, 2023.
[31] ZHANG Z X. Drone?YOLO: an efficient neural network method for target detection in drone images[J]. Drones, 2023, 7(8): 526.
[32] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[33] LV W Y, XU S L, ZHAO Y, et al. DETRs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023. |