[1] ZHENG Q H, TIAN X Y, YU Z G, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7(10): 596.
[2] ZHENG Q H, SAPONARA S, TIAN X Y, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659-671.
[3] LIN G, ZHANG Y, XU G, et al. Smoke detection on video sequences using 3D convolutional neural networks[J]. Fire Technology, 2019, 55(5): 1827-1847.
[4] 李巨虎, 范睿先, 陈志泊. 基于颜色和纹理特征的森林火灾图像识别[J]. 华南理工大学学报 (自然科学版), 2020, 48(1): 70-83.
LI J H, FAN R X, CHEN Z B. Forest fire recognition based on color and texture features[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(1): 70-83.
[5] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 4489-4497.
[6] 赵杰, 汪洪法, 吴凯. 基于特征增强及多层次融合的火灾火焰检测[J]. 中国安全生产科学技术, 2024, 20(1): 93-99.
ZHAO J, WANG H F, WU K. Fire flame detection based on feature enhancement and multi-level fusion[J]. China Safety Science and Technology, 2024, 20(1): 93-99.
[7] 李晓旭, 李泊宁, 张曦, 等. 基于CA-Res注意力机制的YOLOv5图像火灾检测算法[J]. 消防科学与技术, 2023, 42(8): 1113-1116.
LI X X, LI B N, ZHANG X, et al. Image fire detection algorithm based on YOLOv5 with CA-Res attention mechanism[J]. Fire Science and Technology, 2023, 42(8): 1113-1116.
[8] 皮骏, 刘宇恒, 李久昊. 基于YOLOv5s的轻量化森林火灾检测算法研究[J]. 图学学报, 2023, 44(1): 26-32.
PI J, LIU Y H, LI J H. Research on lightweight forest fire detection algorithm based on YOLOv5s[J]. Journal of Graphics, 2023, 44(1): 26-32.
[9] PARK M J, KO B C. Two-step real-time night-time fire detection in an urban environment using static ELASTIC-YOLOv3 and temporal fire-tube[J]. Sensors, 2020, 20(8): 2202.
[10] BOCHKOVSKIY A, WANG C Y, LIAO H Y. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[11] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[12] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[13] WANG C Y, LIAO H, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 1571-1580.
[14] WANG C, LIAO H M, YEH A I. Designing network design strategies through gradient path analysis[J]. Journal of Information Science and Engineering, 2023, 39(4): 975-995.
[15] DING X, ZHANG X, HAN J, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10886-10895.
[16] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2020: 9626-9635.
[17] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[18] FENG C, ZHONG Y, GAO Y, et al. TOOD: task-aligned one-stage object detection[C]//Proceedings of the 2021 IEEE International Conference on Computer Vision, 2021: 3490-3499.
[19] CHEN Q, WANG Y, YANG T, et al. You only look one-level feature[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021: 13039-13048.
[20] HASHEMZADEH M, ZADEMEHDI A. Fire detection for video surveillance applications using ICA K-medoids-based color model and efficient spatiotemporal visual features[J]. Expert Systems with Applications, 2019, 130: 60-78.
[21] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[22] ZENG N, WU P, WANG Z, et al. A small-sized object detection oriented multi-scale feature fusion approach with application to defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-14.
[23] WANG Z, WU L, LI T, et al. A smoke detection model based on improved YOLOv5 [J]. Mathematics, 2022, 10(7): 1190. |