[1] 江英杰, 宋晓宁. 基于视觉Transformer的双流目标跟踪算法[J]. 计算机工程与应用, 2022, 58(12): 183-190.
JIANG Y J, SONG X N. Dual-Stream object tracking algorithm based on vision transformer[J]. Computer Engineering and Applications, 2022, 58(12): 183-190.
[2] 厍向阳, 罗佳琪, 任海青, 等. 基于稀疏表示的相关滤波目标跟踪算法[J]. 计算机工程与应用, 2023, 59(11): 71-79.
SHE X Y, LUO J Q, REN H Q, et al. Correlation filter for object tracking method based on spare representation[J]. Computer Engineering and Applications, 2023, 59(11): 71-79.
[3] BHAT G, DANELLJAN M, GOOL L V, et al. Learning discriminative model prediction for tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6182-6191.
[4] HENRIQUES F J, RUI C, PEDRO M, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.
[5] LUKEZIC A, VOJIR T, ZAJC L C, et al. Discriminative correlation filter with channel and spatial reliability[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6309-6318.
[6] TOUIL E D, TERKI N, MEDOUAKH S. Hierarchical convolutional features for visual tracking via two combined color spaces with SVM classifier[J]. Signal, Image and Video Processing, 2019, 13(2): 359-368.
[7] WANG N, XIE Z, HUANG N. Improved context-aware correlation filter tracking[C]//Proceedings of the 2018 International Conference on Image and Video Processing, and Artificial Intelligence, 2018, 10836: 144-152.
[8] DANELLJAN M, ROBINSON A, SHAHBAZ K F, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 472-488.
[9] DANELLJAN M, BHAT G, SHAHBAZ K F, et al. Eco: efficient convolution operators for tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6638-6646.
[10] YAN B, PENG H, FU J, et al. Learning spatio-temporal transformer for visual tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10448-10457.
[11] CHEN X, YAN B, ZHU J, et al. Transformer tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8126-8135.
[12] CUI Y, JIANG C, WANG L, et al. End-to-end tracking with iterative mixed attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 18-24.
[13] 李昊轩. 基于深度学习的音频事件分类研究[D]. 北京: 北京邮电大学, 2020.
LI H X. Research on audio event classification based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2020.
[14] HUANG L, ZHAO X, HUANG K. Got-10k: a large high diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1562-1577.
[15] FAN H, LIN L, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5374-5383.
[16] KRISTAN M, LEONARDIS A, MATAS J, et al. The sixth visual object tracking vot2018 challenge results[C]//Proceedings of the European Conference on Computer Vision Workshops, 2018: 3-53.
[17] WU Y, LIM J w, YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848.
[18] KIANI G H,FAGG A,HUANG C,et al. Need for speed:a benchmark for higher frame rate object tracking[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 1125-1134.
[19] SONG Y, MA C, GONG L, et al. CREST: convolutional residual learning for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2555-2564.
[20] LU X, MA C, NI B, et al. Deep regression tracking with shrinkage loss[C]//Proceedings of the European Conference on Computer Vision, 2018: 353-369.
[21] DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: accurate tracking by overlap maximization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4660-4669.
[22] BHAT G, DANELLJAN M, GOOL V L, et al. Know your surroundings: exploiting scene information for object tracking[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 205-221.
[23] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision, 2020: 213-229.
[24] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149.
[25] VOIGTLAENDER P, LUITEN J, TORR P H S, et al. Siam R-CNN: visual tracking by re-detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6578-6588.
[26] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
[27] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3146-3154.
[28] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[29] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the International Conference on Machine Learning, 2015: 448-456.
[30] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//Proceedings of the European Conference on Computer Vision, 2016: 850-865.
[31] LI B, WU W, WANG Q, et al. Siamrpn++: evolution of siamese visual tracking with very deep networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4282-4291.
[32] ZHENG L, TANG M, CHEN Y, et al. Learning feature embeddings for discriminant model based tracking[C]//Proceedings of the European Conference on Computer Vision, 2020: 759-775.
[33] DANELLJAN M, GOOL L V, TIMOFTE R. Probabilistic regression for visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 7183-7192.
[34] WANG G, LUO C, SUN X, et al. Tracking by instance detection: a meta-learning approach[C]//Proceedings of theIEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6288-6297.
[35] LUKEZIC A, MATAS J, KRISTAN M. D3S-A discriminative single shot segmentation tracker[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 7133-7142.
[36] WANG N, ZHOU W, WANG J, et al. Transformer meets tracker: exploiting temporal context for robust visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 1571-1580. |