Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (21): 18-37.DOI: 10.3778/j.issn.1002-8331.2403-0152
• Research Hotspots and Reviews • Previous Articles Next Articles
SU Yanyan, QIU Zhiliang, LI Guo, LU Shenglian, CHEN Ming
Online:
2024-11-01
Published:
2024-10-25
苏妍妍,邱志良,李帼,陆声链,陈明
CLC Number:
SU Yanyan, QIU Zhiliang, LI Guo, LU Shenglian, CHEN Ming. Review on Deep Learning-Based 2D Single-Person Pose Estimation[J]. Computer Engineering and Applications, 2024, 60(21): 18-37.
苏妍妍, 邱志良, 李帼, 陆声链, 陈明. 基于深度学习的二维单人姿态估计综述[J]. 计算机工程与应用, 2024, 60(21): 18-37.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2403-0152
[1] VATS A, ANASTASIU D C. Key point-based driver activity recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022: 3274-3281. [2] 李聪林, 王琪冰, 陆佳炜, 等. 基于数字孪生的电梯乘客异常行为建模与识别方法[J]. 计算机工程与应用, 2023, 59(19): 274-284. LI C L, WANG Q B, LU J W, et al. Modeling and recognition method of elevator passenger abnormal behavior based on digital twin[J]. Computer Engineering and Applications, 2023, 59(19): 274-284. [3] LI X, CHEN Z, ZHONG Z, et al. Human-machine collaboration method based on key nodes of human posture[C]//Proceedings of the 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), 2022: 140-146. [4] SONG Y F, ZHANG P, LIU L B. Human-machine interaction system with vision-based gesture recognition[J]. Computer Science, 2019, 46(S2): 570-574. [5] SHAO M Y, VAGG T, SEIBOLD M, et al. Towards a low-cost monitor-based augmented reality training platform for at-home ultrasound skill development[J]. Journal of Imaging, 2022, 8(11): 305. [6] BASIRATZADEH S, LEMAIRE E D, BADDOUR N. A novel augmented reality mobile-based application for biomechanical measurement[J]. BioMed, 2022, 2(2): 255-269. [7] 张宇, 温光照, 米思娅, 等. 基于深度学习的二维人体姿态估计综述[J]. 软件学报, 2022, 33(11): 4173-4191. ZHANG Y, WEN G Z, MI S Y, et al. Overview on 2D human pose estimation based on deep learning[J]. Journal of Software, 2022, 33(11): 4173-4191. [8] HUANG J, ZHU Z, GUO F, et al. The devil is in the details: delving into unbiased data processing for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 5700-5709. [9] 王仕宸, 黄凯, 陈志刚, 等. 深度学习的三维人体姿态估计综述[J]. 计算机科学与探索, 2023, 17(1): 74-87. WANG S C, HUANG K, CHEN Z G, et al. Survey on 3D human pose estimation of deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87. [10] YANG Y, RAMANAN D. Articulated human detection with flexible mixtures of parts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(12): 2878-2890. [11] MUNEA T L, JEMBRE Y Z, WELDEGEBRIEL H T, et al. The progress of human pose estimation: a survey and taxonomy of models applied in 2D human pose estimation[J]. IEEE Access, 2020, 8: 133330-133348. [12] CHEN Y, TIAN Y, HE M. Monocular human pose estimation: a survey of deep learning-based methods[J]. Computer Vision and Image Understanding, 2020, 192: 102897. [13] SAMKARI E, ARIF M, ALGHAMDI M, et al. Human pose estimation using deep learning: a systematic literature review[J]. Machine Learning and Knowledge Extraction, 2023, 5(4): 1612-1659. [14] DUBEY S, DIXIT M. A comprehensive survey on human pose estimation approaches[J]. Multimedia Systems, 2023, 29(1): 167-195. [15] ZHENG C, WU W, CHEN C, et al. Deep learning-based human pose estimation: a survey[J]. ACM Computing Surveys, 2023, 56(1): 1-37. [16] ZHANG F, ZHU X, WANG C. A comprehensive survey on single-person pose estimation in social robotics[J]. International Journal of Social Robotics, 2022, 14(9): 1995-2008. [17] LI Y, YANG S, LIU P, et al. SimCC: a simple coordinate classification perspective for human pose estimation[C]//Proceedings of the European Conference on Computer Vision, 2022: 89-106. [18] GU K, YANG L, YAO A. Removing the bias of integral pose regression[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 11067-11076. [19] JOHNSON S, EVERINGHAM M. Clustered pose and nonlinear appearance models for human pose estimation[C]//Proceedings of British Machine Vision Conference, 2010: 1-11. [20] SAPP B, TASKAR B. Modec: multimodal decomposable models for human pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 2013: 3674-3681. [21] ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: new benchmark and state of the art analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 2014: 3686-3693. [22] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, 2014: 740-755. [23] WU J, ZHENG H, ZHAO B, et al. AI challenger: a large-scale dataset for going deeper in image understanding[J]. arXiv:1711.06475, 2017. [24] ZHAO L, WANG N, GONG C, et al. Estimating human pose efficiently by parallel pyramid networks[J]. IEEE Transactions on Image Processing, 2021, 30: 6785-6800. [25] TOMPSON J, GOROSHIN R, JAIN A, et al. Efficient object localization using convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015: 648-656. [26] CHENG B, XIAO B, WANG J, et al. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 5386-5395. [27] PENG X, TANG Z, YANG F, et al. Jointly optimize data augmentation and network training: adversarial data augmentation in human pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018: 2226-2234. [28] NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 483-499. [29] XIAO B, WU H, WEI Y. Simple baselines for human pose estimation and tracking[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 466-481. [30] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019: 5693-5703. [31] CHEN Y, SHEN C, WEI X S, et al. Adversarial posenet: a structure-aware convolutional network for human pose estimation[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 1212-1221. [32] HUANG J, ZHU Z, HUANG G, et al. AID: pushing the performance boundary of human pose estimation with information dropping augmentation[J]. arXiv:2008.07139, 2020. [33] WANG D, XIE W, CAI Y, et al. Adaptive data augmentation network for human pose estimation[J]. Digital Signal Processing, 2022, 129: 103681. [34] BIN Y, CAO X, CHEN X, et al. Adversarial semantic data augmentation for human pose estimation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, 2020: 606-622. [35] JIANG W, JIN S, LIU W, et al. Posetrans: a simple yet effective pose transformation augmentation for human pose estimation[C]//Proceedings of the European Conference on Computer Vision, 2022: 643-659. [36] ELHARROUSS O, AKBARI Y, ALMAADEED N, et al. Backbones-review: feature extraction networks for deep learning and deep reinforcement learning approaches[J]. arXiv:2206.08016, 2022. [37] NGUYEN T D, KRESOVIC M. A survey of top-down approaches for human pose estimation[J]. arXiv:2202.02656, 2022. [38] TOMPSON J J, JAIN A, LECUN Y, et al. Joint training of a convolutional network and a graphical model for human pose estimation[C]//Advances in Neural Information Processing Systems, 2014: 1799-1807. [39] CHEN X, YUILLE A L. Articulated pose estimation by a graphical model with image dependent pairwise relations[C]//Advances in Neural Information Processing Systems, 2014: 1736-1744. [40] BIN Y, CHEN Z M, WEI X S, et al. Structure-aware human pose estimation with graph convolutional networks[J]. Pattern Recognition, 2020, 106: 107410. [41] 马金林, 崔琦磊, 马自萍, 等. 预加权调制密集图卷积网络三维人体姿态估计[J]. 计算机科学与探索, 2024, 18(4): 963-977. MA J L, CUI Q L, MA Z P , et al. Pre-weighted modulated dense graph convolutional networks for 3D human pose estimation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 963-977. [42] SUN X, SHANG J, LIANG S, et al. Compositional human pose regression[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2602-2611. [43] TANG W, YU P, WU Y. Deeply learned compositional models for human pose estimation[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 190-206. [44] TOSHEV A, SZEGEDY C. DeepPose: human pose estimation via deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Columbus, OH, USA, 2014: 1653-1660. [45] CHEN H, FENG R, WU S, et al. 2D Human pose estimation: a survey[J]. Multimedia Systems, 2023, 29(5): 3115-3138. [46] CARREIRA J, AGRAWAL P, FRAGKIADAKI K, et al. Human pose estimation with iterative error feedback[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 4733-4742. [47] WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4724-4732. [48] SU Z, YE M, ZHANG G, et al. Cascade feature aggregation for human pose estimation[J]. arXiv:1902.07837, 2019. [49] BELAGIANNIS V, ZISSERMAN A. Recurrent human pose estimation[C]//Proceedings of the 12th IEEE International Conference on Automatic Face & Gesture Recognition, 2017: 468-475. [50] TANG W, WU Y. Does learning specific features for related parts help human pose estimation?[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019: 1107-1116. [51] HWANG J, PARK S, KWAK N. Athlete pose estimation by a global-local network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPR), Honolulu, HI, USA, 2017: 58-65. [52] HUA G, LI L, LIU S. Multipath affinage stacked—hourglass networks for human pose estimation[J]. Frontiers of Computer Science, 2020, 14: 1-12. [53] KE L, CHANG M C, QI H, et al. Multi-scale structure-aware network for human pose estimation[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 713-728. [54] YANG W, LI S, OUYANG W, et al. Learning feature pyramids for human pose estimation[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 1281-1290. [55] TIAN Y, HU W, JIANG H, et al. Densely connected attentional pyramid residual network for human pose estimation[J]. Neurocomputing, 2019, 347: 13-23. [56] LI S, LIU Z Q, CHAN A B. Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 2014: 482-489. [57] FAN X, ZHENG K, LIN Y, et al. Combining local appearance and holistic view: dual-source deep neural networks for human pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1347-1355. [58] SHAMSAFAR F, EBRAHIMNEZHAD H. Uniting holistic and part-based attitudes for accurate and robust deep human pose estimation[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12: 2339-2353. [59] CHOU C J, CHIEN J T, CHEN H T. Self adversarial training for human pose estimation[C]//Proceedings of the 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 2018: 17-30. [60] SHAMSOLMOALI P, ZAREAPOOR M, ZHOU H, et al. Amil: adversarial multi-instance learning for human pose estimation[J]. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2020, 16: 1-23. [61] LI Y, ZHANG S, WANG Z, et al. TokenPose: learning keypoint tokens for human pose estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 11313-11322. [62] LI K, WANG S, ZHANG X, et al. Pose recognition with cascade transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 1944-1953. [63] YANG S, QUAN Z, NIE M, et al. TransPose: keypoint localization via transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 11802-11812. [64] YUAN Y, FU R, HUANG L, et al. HRFormer: high-resolution vision transformer for dense predict[C]//Advances in Neural Information Processing Systems, 2021: 7281-7293. [65] XU Y, ZHANG J, ZHANG Q, et al. ViTPose: simple vision transformer baselines for human pose estimation[C]//Advances in Neural Information Processing Systems, 2022: 38571-38584. [66] LIU H, LIU F, FAN X, et al. Polarized self-attention: towards high-quality pixel-wise regression[J]. arXiv:2107. 00782, 2021. [67] YU C, XIAO B, GAO C, et al. Lite-HRNet: a lightweight high-resolution network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10440-10450. [68] 林远强, 郜辉, 王鹏, 等. 引入级联通道注意力的轻量化人体姿态估计[J]. 计算机工程与应用, 2024, 60(13): 219-227. LIN Y Q, GAO H, WANG P, et al. Lightweight human pose estimation with cascaded channel attention[J]. Computer Engineering and Applications, 2024, 60(13): 219-227. [69] 傅裕, 高树辉. 改进YOLOv8s-Pose多人姿态估计轻量化模型研究[J/OL]. 计算机科学与探索(2024-05-07)[2024-07-01]. https://link.cnki.net/urlid/11.5602.TP.20240507. 1148.002. FU Y, GAO S H. Research on the lightweight model of multi-person pose estimation based on the improved YOLOv8s-Pose[J]. Journal of Frontiers of Computer Science and Technology(2024?05?07)[2024?07?01].https://link.cnki.net/urlid/11.5602.TP.20240507.1148.002. [70] ZHANG F, ZHU X, YE M. Fast human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019: 3517-3526. [71] NIE X, FENG J, ZUO Y, et al. Human pose estimation with parsing induced learner[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2100-2108. [72] JIANG T, LU P, ZHANG L, et al. RTMPose: real-time multi-person pose estimation based on mmpose[J]. arXiv:2303. 07399, 2023. [73] YANG Z, ZENG A, YUAN C, et al. Effective whole-body pose estimation with two-stages distillation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 4210-4220. [74] LIFSHITZ I, FETAYA E, ULLMAN S. Human pose estimation using deep consensus voting[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 246-260. [75] GENG Z, WANG C, WEI Y, et al. Human pose as co-mpositional tokens[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023: 660-671. [76] NIBALI A, HE Z, MORGAN S, et al. Numerical coordinate regression with convolutional neural networks[J]. arXiv: 1801.07372, 2018. [77] QU H, XU L, CAI Y, et al. Heatmap distribution matching for human pose estimation[C]//Advances in Neural Information Processing Systems, 2022: 24327-24339. [78] LI J, CHEN T, SHI R, et al. Localization with sampling-argmax[C]//Advances in Neural Information Processing Systems, 2021: 27236-27248. [79] LI J, BIAN S, ZENG A, et al. Human pose regression with residual log-likelihood estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 11025-11034. [80] PAPANDREOU G, ZHU T, KANAZAWA N, et al. Towards accurate multi-person pose estimation in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017: 4903-4911. [81] ZHANG F, ZHU X, DAI H, et al. Distribution-aware coordinate representation for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 7093-7102. [82] LUVIZON D C, TABIA H, PICARD D. Human pose regression by combining indirect part detection and contextual information[J]. Computers & Graphics, 2019, 85: 15-22. [83] GU K, CHEN R, YAO A. On the calibration of human pose estimation[J]. arXiv:2311.17105, 2023. [84] GAI D, FENG R, MIN W, et al. Spatiotemporal learning transformer for video-based human pose estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023: 33(9): 4564-4576 . [85] ZHANG S H, LI R, DONG X, et al. Pose2seg: detection free human instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019: 889-898. [86] 李佳宁, 王东凯, 张史梁. 基于深度学习的二维人体姿态估计: 现状及展望[J]. 计算机学报, 2024, 47(1): 231-250. LI J N, WANG D K, ZHANG S L. Deep-learning-based 2D human pose estimation: present and future[J]. Chinese Journal of Computers, 2024, 47(1): 231-250. [87] 蔡哲栋, 应娜, 郭春生, 等. YOLOv3剪枝模型的多人姿态估计[J]. 中国图象图形学报, 2021, 26(4): 837-846. CAI Z D, YING N, GUO C S, et al. Research on multiperson pose estimation combined with YOLOv3 pruning model[J]. Journal of lmage and Graphics, 2021, 26(4): 837-846. [88] KYROLLOS D G, FULLER A, GREENWOOD K, et al. Under the cover infant pose estimation using multimodal data[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-12. [89] DAI Y, LIN Y T, LIN X P, et al. Sloper4D: a scene-aware dataset for global 4d human pose estimation in urban environments[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023: 682-692. [90] DELMAS G, WEINZAEPFEL P, MORENO-NOGUER F, et al. Posefix: correcting 3D human poses with natural language[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 15018-15028. [91] VERMA A, TIWARI V, LOVANSHI M, et al. A human body part semantic segmentation enabled parsing for human pose estimation[C]//Proceedings of the 5th International Conference on Image, Video and Signal Processing, 2023: 43-50. [92] GRECO A, VENTO B. PAR Contest 2023: pedestrian attributes recognition with multi-task learning[C]//Proceedings of the International Conference on Computer Analysis of Images and Patterns, 2023: 3-12. [93] GU A, DAO T. Mamba: Linear-time sequence modeling with selective state spaces[J]. arXiv:2312.00752, 2023. [94] 杨旭升, 吴江宇, 胡佛, 等. 基于渐进高斯滤波融合的多视角人体姿态估计[J]. 自动化学报, 2024, 50(3): 607-616. YANG X S, WU J Y, HU F, et al. Multi-view human pose estimation based on progressive gaussian filtering fusion[J]. Acta Automatica Sinica, 2024, 50(3): 607-616. |
[1] | WANG Cailing, YAN Jingjing, ZHANG Zhidong. Review on Human Action Recognition Methods Based on Multimodal Data [J]. Computer Engineering and Applications, 2024, 60(9): 1-18. |
[2] | LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang. Research Progress of Image Style Transfer Based on Neural Network [J]. Computer Engineering and Applications, 2024, 60(9): 30-47. |
[3] | YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(9): 65-78. |
[4] | SONG Jianping, WANG Yi, SUN Kaiwei, LIU Qilie. Short Text Classification Combined with Hyperbolic Graph Attention Networks and Labels [J]. Computer Engineering and Applications, 2024, 60(9): 188-195. |
[5] | LI Houjun, WEI Boquan. Attribute Distillation for Zero-Shot Recognition [J]. Computer Engineering and Applications, 2024, 60(9): 219-227. |
[6] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[7] | QIU Yunfei, WANG Yifan. Multi-Level 3D Point Cloud Completion with Dual-Branch Structure [J]. Computer Engineering and Applications, 2024, 60(9): 272-282. |
[8] | YE Bin, ZHU Xingshuai, YAO Kang, DING Shangshang, FU Weiwei. Binocular Depth Measurement Method for Desktop Interaction Scene [J]. Computer Engineering and Applications, 2024, 60(9): 283-291. |
[9] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[10] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[11] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[12] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[13] | SHEN Haiyun, HUANG Zhongyi, WANG Haichuan, YU Honghao. Improved Tracktor-Based Pedestrian Multi-Objective Tracking Algorithm [J]. Computer Engineering and Applications, 2024, 60(8): 242-249. |
[14] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[15] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||