[1] KUMARI S, CHOUDHARY P K, SHUKLA R, et al. Recent advances in nanotechnology based combination drug therapy for skin cancer[J]. Journal of Biomaterials Science, Polymer Edition, 2022, 33(11): 1435-1468.
[2] ANAND V, GUPTA S, NAYAK S R, et al. An automated deep learning models for classification of skin disease using dermoscopy images: a comprehensive study[J]. Multimedia Tools and Applications, 2022, 81(26): 37379-37401.
[3] CAZZATO G, MANGIALARDI K, FALCICCHIO G, et al. Preferentially expressed antigen in melanoma (PRAME) and human malignant melanoma: a retrospective study[J]. Genes, 2022, 13(3): 545.
[4] GUY JR G P, THOMAS C C, THOMPSON T, et al. Vital signs: melanoma incidence and mortality trends and projections—United States, 1982—2030[J]. MMWR Morbidity and Mortality Weekly Report, 2015, 64(21): 591-596.
[5] SONTHALIA S, PASQUALI P, AGRAWAL M, et al. Dermoscopy update: review of its extradiagnostic and expanding indications and future prospects[J]. Dermatology Practical & Conceptual, 2019, 9(4): 253-264.
[6] MOHAKUD R, DASH R. Skin cancer image segmentation utilizing a novel EN-GWO based hyper-parameter optimized FCEDN[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(10): 9889-9904.
[7] LODDO A, PUTZU L. On the reliability of CNNs in clinical practice: a computer-aided diagnosis system case study[J]. Applied Sciences, 2022, 12(7): 3269.
[8] ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118.
[9] KHOULOUD S, AHLEM M, FADEL T, et al. W-net and inception residual network for skin lesion segmentation and classification[J]. Applied Intelligence, 2022: 1-19.
[10] LOPEZ A R, GIRO-I-NIETO X, BURDICK J, et al. Skin lesion classification from dermoscopic images using deep learning techniques[C]//Proceedings of the 2017 13th IASTED International Conference on Biomedical Engineering, 2017: 49-54.
[11] ALANAZI S A. Melanoma identification through X-ray modality using inception-v3 based convolutional neural network[J]. Computers, Materials & Continua, 2022, 72(1): 37-55.
[12] XIA X, XU C, NAN B. Inception-v3 for flower classification[C]//Proceedings of the 2017 2nd International Conference on Image, Vision and Computing, 2017: 783-787.
[13] NIDA N, IRTAZA A, YOUSAF M H. A novel region-extreme convolutional neural network for melanoma malignancy recognition[J]. Mathematical Problems in Engineering, 2021: 1-18.
[14] ALMARAZ-DAMIAN J A, PONOMARYOV V, SADOVNYCHIY S, et al. Melanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measures[J]. Entropy, 2020, 22(4): 484.
[15] ZHANG J, XIE Y, XIA Y, SHEN C. Attention residual learning for skin lesion classification[J]. IEEE Transactions on Medical Imaging, 2019, 38: 2092-2103.
[16] AFZA F, SHARIF M, KHAN M A, et al. Multiclass skin lesion classification using hybrid deep features selection and extreme learning machine[J]. Sensors, 2022, 22(3): 799.
[17] LIU Z, MAO H, WU C Y, et al. A convNet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11976-11986.
[18] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[19] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[20] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[21] HUANG G, LIU Z, MAATEN V D L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[22] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 9992-10002.
[23] RYALI C, HU Y T, BOLYA D, et al. Hiera: a hierarchical vision transformer without the bells-and-whistles[J]. arXiv:2306.00989, 2023.
[24] ALI R, HARDIE R C, NARAYANAN B N, et al. Deep learning ensemble methods for skin lesion analysis towards melanoma detection[C]//Proceedings of the 2019 IEEE National Aerospace and Electronics Conference, 2019: 311-316.
[25] PACHECO A G C, ALI A R, TRAPPENBERG T. Skin cancer detection based on deep learning and entropy to detect outlier samples[J]. arXiv:1909.04525, 2019.
[26] ALI R, HARDIE R C, DE SILVA M S, et al. Skin lesion segmentation and classification for ISIC 2018 by combining deep CNN and handcrafted features[J]. arXiv:1908.05730, 2019.
[27] AHMED S A A, YANIKO?LU B, G?KSU ?, et al. Skin lesion classification with deep CNN ensembles[C]//Proceedings of the 2020 28th Signal Processing and Communications Applications Conference, 2020: 1-4.
[28] GUISSOUS A E. Skin lesion classification using deep neural network[J]. arXiv:1911.07817, 2019.
[29] BENYAHIA S, MEFTAH B, LéZORAY O. Multi-features extraction based on deep learning for skin lesion classification[J]. Tissue and Cell, 2022, 74: 101701.
[30] 张慧婷. 用于糖尿病视网膜病变分级的深度学习模型研究[D]. 太原: 太原理工大学, 2021.
ZHANG H T. The research of deep learning model for diabetic retinopathy grading[D]. Taiyuan: Taiyuan University of Technology, 2021.
[31] SUN R, LI Y, ZHANG T, et al. Lesion-aware transformers for diabetic retinopathy grading[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10938-10947.
[32] KASSANI S H, KASSANI P H, KHAZAEINEZHAD R, et al. Diabetic retinopathy classification using a modified xception architecture[C]//Proceedings of the 2019 IEEE International Symposium on Signal Processing and Information Technology, 2019: 1-6. |