Adaptive Feature Fusion Embedding Network for Few Shot Fine-Grained Image Classification
XIE Yaohua, ZHANG Weichuan, REN Jie, JING Junfeng
1.School of Electronic Information, Xi’an Polytechnic University, Xi’an 710600, China
2.Xi’an Polytechnic University Branch of Shaanxi Artificial Intelligence Joint Laboratory, Xi’an 710600, China
[1] LI F F,ROB F,PIETRO P.One-shot learning of object categories[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):594-611.
[2] LI F F,FERGUS R,PERONA P.A Bayesian approach to unsupervised one-shot learning of object categories[C]//Proceedings of the Ninth IEEE International Conference on Computer Vision(ICCV),Oct 13-16,2003,Nice,France.New York:IEEE,2003:1134-1141.
[3] SHU J,XIE Q,YI L,et al.Meta-weight-net:learning an explicit mapping for sample weighting[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems(NIPS),Dec 8-14,2019,Vancouver,BC,Canada,2019:1919-1930.
[4] XIAO T,XU Y,YANG K,et al.The application of two-level attention models in deep convolutional neural network for fine-grained image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),June 7-12,2015,Boston,MA,USA,2015:842-850.
[5] PENG Y,HE X,ZHAO J.Object-part attention model for fine-grained image classification[J].IEEE Transactions on Image Processing,2017,27(3):1487-1500.
[6] RAVI S,LAROCHELLE H.Optimization as a model for few-shot learning[C]//Proceedings of the 5th International Conference on Learning Representations(ICLR),Apr 24-26,2017,Toulon,France.New York:IEEE,2017:1-11.
[7] FINN C,ABBEEL P,LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[C]//International Conference on Machine Learning(ICML),Aug 6?11,2017,Sydney,NSW,Australia.New York:IEEE,2017:1126-1135.
[8] TIAN C,ZHU X,HU Z,et al.A transfer approach with attention reptile method and long-term generation mechanism for few-shot traffic prediction[J].Neurocomputing,2021,452(1):15-27.
[9] RUSU A A,RAO D,SYGNOWSKI J,et al.Meta-learning with latent embedding optimization[C]//International Conference on Learning Representations(ICLR),New Orleans,LA,USA,2019:1-11.
[10] LI W B,XU J L,HUO O J,et al.Distribution consistency based covariance metric networks for few-shot learning[C]//Proceedings of the The Thirty-Third AAAI Conference on Artificial Intelligence,?Honolulu,Hawaii,USA,2019:8642-8649.
[11] DONG C Q,LI W B,HUO J,et al,Learning task-aware local representations for few-shot learning[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence(IJCAI),Yokohama,Japan,2020:716-722.
[12] LI W,WANG L,XU J,et al.Revisiting local descriptor based image-to-class measure for few-shot learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(ICCV),Long Beach,CA,USA,2019:7260-7268.
[13] VINYALS O,BLUNDELL C,LILLICRAP T,et al.Matching networks for one shot learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems(NIPS),Dec 5-10,2016,Barcelona,Spain.New York:IEEE,2016:3637-3645.
[14] SNELL J,SWERSKY K,ZEMEL R.Prototypical networks for few-shot learning[J].Advances in Neural Information Processing Systems,2017,30(1):4077-4087.
[15] SATORRAS V G,ESTRACH J B.Few-shot learning with graph neural networks[C]//International Conference on Learning Representations(ICLR),Vancouver,BC,Canada,2018:1-13.
[16] ZHANG C,CAI Y,LIN G,et al.DeepEMD:few-shot image classification with differentiable earth mover’s distance and structured classifiers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),Seattle,WA,USA,2020:12203-12213.
[17] WANG D,MA Q,ZHENG Q,et al.Improved local-feature-based few-shot learning with Sinkhorn metrics[J].International Journal of Machine Learning and Cybernetics,2022,13(4):1099-1114.
[18] CAO S,WANG W,ZHANG J,et al.A few-shot fine-grained image classification method leveraging global and local structures[J].International Journal of Machine Learning and Cybernetics,2022,13:2273-2281.
[19] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Jun 27-30,2016,Las Vegas,NV,USA.New York:IEEE,2016:770-778.
[20] ZHONG X,GONG O,HUANG W,et al.Squeeze-and-excitation wide residual networks in image classification[C]//2019 IEEE International Conference on Image Processing(ICIP),Sep 22-25,2019,Taipei,Taiwan,China.New York:IEEE,2019:395-399.
[21] PINHEIRO P O,LIN T Y,COLLOBERT R,et al.Learning to refine object segments[C]//European Conference on Computer Vision(ECCV),2016:75-91.
[22] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision(ECCV),2016:21-37.
[23] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Honolulu,HI,USA,2017:2117-2125.
[24] LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Salt Lake City,UT,USA,2018:8759-8768.
[25] HU J,SHEN L,SUN G.Squeeze-and-excitation net-works[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Jun 18-22,2018,Salt Lake City,UT,USA.New York:IEEE,2018:7132-7141.
[26] HU Y,GRIPON V,PATEUX S.Leveraging the feature distribution in transfer-based few-shot learning[C]//International Conference on Artificial Neural Networks(ICANN),Sep 14-17,2021,Bratislava,Slovakia.Berlin:Springer,2021:487-499.
[27] GANDER W.Algorithms for the QR decomposition[J].Research Report,1980,80(2):1251-1268.
[28] KHOSLA A,JAYADEVAPRAKASH N,YAO B,et al.Novel dataset for fine-grained image categorization:stanford dogs[J].Computer Science,2012,2(1):1-2.
[29] KRAUSE J,STARK M,DENG J,et al.3D object representations for fine-grained categorization[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops(ICCV),Dec 2-8,2013,Sydney,Australia.New York:IEEE,2013:554-561.
[30] OH SONG H,XIANG Y,JEGELKA S,et al.Deep metric learning via lifted structured feature embedding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Jun 27-30,2016,Las Vegas,NV,USA.New York:IEEE,2016:4004-4012.
[31] KINGMA D P,BA J.Adam:a method for stochastic optimization[C]//Proceedings of the International Conference on Learning Representations(ICLR),May 7-9,2015,San Diego,CA,USA.New York:IEEE,2016:1-15.
[32] MOLCHANOV P,TYREE S,KARRAS T,et al.Pruning convolutional neural networks for resource efficient inference[C]//5th International Conference on Learning Representations(ICLR),April 24-26 2017,Toulon,France,2019:1-17.
[33] WOLD S,ESBENSEN K,GELADI P.Principal component analysis[J].Chemometrics and Intelligent Laboratory Systems,1987,2(1/3):37-52.
[34] VAN DER MAATEN L,HINTON G.Visualizing data using t-SNE[J].Journal of Machine Learning Research,2008,9(11):2579-2605.