[1] ZHANG G, DAVOODNIA V, ETEMAD A. PARSE: pairwise alignment of representations in semi-supervised EEG learning for emotion recognition[J]. IEEE Transactions on Affective Computing, 2022, 13(4): 2185-2200.
[2] ARYA R, SINGH J, KUMAR A. A survey of multidisciplinary domains contributing to affective computing[J]. Computer Science Review, 2021, 40(3): 100399.
[3] 陈景霞, 唐喆喆, 林文涛, 等. 用于脑电数据增强和情绪识别的自注意力GAN[J]. 计算机工程与应用, 2023, 59(5): 160-168.
CHEN J X, TANG Z Z, LIN W T, et al. Self-attention GAN for EEG data augmentation and emotion recognition[J]. Computer Engineering and Applications, 2023, 59(5): 160-168.
[4] 柳长源, 李文强, 毕晓君.基于脑电信号的情绪特征提取与分类[J]. 传感技术学报, 2019, 32(1): 82-88.
LIU C Y, LI W Q, BI X J. Emotional feature extraction and classification based on EEG signals[J]. Chinese Journal of Sensors and Actuators, 2019, 32(1): 82-88.
[5] 李贤哲, 暴伟, 谢能刚. 基于脑电信号的情绪识别[J]. 北京生物医学工程, 2022, 41(1): 8-16.
LI X Z, BAO W, XIE N G. Emotional recognition based on electroencephalograph signals[J]. Beijing Biomedical Engineering, 2022, 41(1): 8-16.
[6] 廖健熙, 吕勇, 王振宇, 等. 基于随机森林算法的脑电情绪识别研究[J]. 电脑与信息技术, 2022, 30(3): 1-4.
LIAO J X, LV Y, WANG Z Y, et al. Emotion recognition of EEG based on random forest algorithm[J]. Computer and Information Technology, 2022, 30(3): 1-4.
[7] 洪腾蛟, 丁凤娟, 王鹏, 等. 深度学习在轴承故障诊断领域的应用研究[J]. 科学技术与工程, 2021, 21(22): 9203-9211.
HONG T J, DING F J, WANG P, et al. Application of deep learning in the bearing fault diagnosis [J]. Science Technology and Engineering, 2021, 21(22): 9203-9211.
[8] HUANG W, XUE Y, HU L, et al. S-EEGNet: electroencephalogram signal classification based on a separable convolution neural network with bilinear interpolation[J]. IEEE Access, 2020, 8: 131636-131646.
[9] 梁椰舷, 李婷, 姬昊余. 多通道连续卷积神经网络脑电信号情绪识别[J]. 计算机系统应用, 2023, 32(1): 399-405.
LIANG Y X, LI T, JI H Y. Emotion recognition of EEG signals based on multi-channel and continuous CNN[J]. Computer Systems & Applications, 2023, 32(1): 399-405.
[10] 赵丹丹, 赵倩, 董宜先, 等. 基于EEG和DE-CNN-GRU的情绪识别[J]. 计算机系统应用, 2023, 32(4): 206-213.
ZHAO D D, ZHAO Q, DONG Y X, et al. Emotional recognition based on EEG and DE-CNN-GRU[J]. Computer Systems & Applications, 2023, 32(4): 206-213.
[11] YANG Y, WU Q, QIU M, et al. Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network[C]//Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), 2018: 1-7.
[12] 蔡冬丽, 钟清华, 朱永升, 等. 三维输入卷积神经网络脑电信号情感识别[J]. 计算机工程与应用, 2021, 57(5): 161-167.
CAI D L, ZHONG Q H, ZHU Y S, et al. EEG emotion recognition using convolutional neural network with 3D input [J]. Computer Engineering and Applications, 2021, 57(5): 161-167.
[13] 张冰雪, 李文楷. 少量通道脑电信号的实时情绪分类模型[J]. 小型微型计算机系统, 2024, 45(2): 271-277.
ZHANG B X, LI W K. Real-time emotion classification model for few-channel EEG signals[J]. Journal of Chinese Computer Systems, 2024, 45(2): 271-277.
[14] KIM Y, CHOI A. EEG-based emotion classification using long short-term memory network with attention mechanism[J]. Sensors (Basel, Switzerland), 2020, 20(23): 6727.
[15] CHANG W, XU L, YANG Q, et al. EEG signal-driven human-computer interaction emotion recognition model using an attentional neural network algorithm[J]. Journal of Mechanics in Medicine and Biology, 2023: 2340080.
[16] KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: a database for emotion analysis; using physiological signals[J]. IEEE Transactions on Affective Computing, 2011, 3(1): 18-31.
[17] KATSIGIANNIS S, RAMZAN N. DREAMER: a database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 22(1): 98-107.
[18] LANG P J, BRADLEY M M, CUTHBERT B N.International affective picture system(IAPS): technical manual and affective ratings[J]. Psychology, 1997, 77(4): 352-360.
[19] ZHENG W L, GUO H T, LU B L. Revealing critical channels and frequency bands for emotion recognition from EEG with deep belief network[C]//Proceedings of the 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015: 154-157.
[20] LU Y, WANG M, WU W, et al. Dynamic entropy-based pattern learning to identify emotions from EEG signals across individuals[J]. Measurement, 2020, 150: 107003.
[21] 汪佳衡, 王跃明, 姚林. 基于滤波器组长短时记忆网络的脑电信号情绪识别[J]. 生物医学工程学杂志, 2021, 38(3): 447-454.
WANG J H, WANG Y M, YAO L. Using electroencephalogram for emotion recognition based on filter-bank long short-term memory networks[J]. Journal of Biomedical Engineering, 2021, 38(3): 447-454.
[22] HU Z, CHEN L, LUO Y, et al. EEG-based emotion recognition using convolutional recurrent neural network with multi-head self-attention[J]. Applied Sciences, 2022, 12(21): 11255.
[23] 闫超, 张雪英, 张静, 等. 结合注意力机制和特征融合1DCNN的脑电情感识别[J]. 计算机工程与应用, 2023, 59(13): 171-177.
YAN C, ZHANG X Y, ZHANG J, et al. EEG emotion recognition combined with attention mechanism and feature fusion 1DCNN[J]. Computer Engineering and Applications, 2023, 59(13): 171-177.
[24] 张英杰, 谢云. 基于CNN-LSTM的脑电情感四分类研究[J]. 科学技术与工程, 2023, 23(24): 10437-10444.
ZHANG Y J, XIE Y. Four classification of EEG emotion based on CNN-LSTM[J]. Science Technology and Engineering, 2023, 23(24): 10437-10444.
[25] ZHANG T, WANG X, XU X, et al. GCB-Net: graph convolutional broad network and its application in emotion recognition[J]. IEEE Transactions on Affective Computing, 2019, 13(1): 379-388.
[26] 张永, 刘纪奎, 柯文龙. 基于并行可分离卷积和标签平滑正则化的脑电情感识别[J]. 电信科学, 2023, 39(5): 116-128.
ZHANG Y, LIU J K, KE W L. EEG emotion recognition based on parallel separable convolution and label smooth regularization[J]. Telecommunications Science, 2023, 39(5): 116-128.
[27] 陶威. 基于注意力机制的脑电情绪识别方法研究[D]. 合肥: 合肥工业大学, 2021.
TAO W. The research of EEG emotion recognition based on attention mechanism[D]. Hefei: Hefei University of Technology, 2021. |