[1] 陈晋音, 张敦杰, 黄国瀚, 等. 面向图神经网络的对抗攻击与防御综述[J]. 网络与信息安全学报, 2021, 7(3): 1-28.
CHEN J Y, ZHANG D J, HUANG G H, et al. Adversarial attack and defense on graph neural networks: a survey[J]. Chinese Journal of Network and Information Security, 2021, 7(3): 1-28.
[2] SUN Y W, WANG S H, HSIEH T, et al. MEGAN: a generative adversarial network for multi-view network embedding[J]. arXiv:1909.01084, 2019.
[3] YU Y W, YAO H X, WANG H J, et al. Representation learning for large-scale dynamic networks[C]//International Conference on Database Systems for Advanced Applications, 2018: 526-541.
[4] ZHANG Y, XIONG Q, FAN Y, et al. Your style your identity: leveraging writing and photography styles for drug trafficker identification in darknet markets over attributed heterogeneous information network[C]//The World Wide Web Conference, 2019.
[5] FAN W Q, MA Y, LI Q, et al. Graph neural networks for social recommendation[J]. arXiv:1902.07243, 2019.
[6] YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for web-scale recommender systems[J]. arXiv: 1806.01973, 2018.
[7] LIU Z Q, CHEN C C, YANG X X, et al. Heterogeneous graph neural networks for malicious account detection[J]. arXiv:2002.12307, 2020.
[8] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[J]. arXiv:1606.09375, 2016.
[9] MA Y, WANG S H, AGGARWAL C, et al. Graph convolutional networks with eigenpooling[J]. arXiv:1904.13107, 2019.
[10] TANG X F, LI Y D, SUN Y W, et al. Transferring robustness for graph neural network against poisoning attacks[J]. arXiv:1908.07558, 2019.
[11] WU H J, WANG C, TYSHETSKIY Y, et al. Adversarial examples on graph data: deep insights into attack and defense[J]. arXiv:1903.01610, 2019.
[12] ZUGNER D, AKBARNEJAD A, GUNNEMANN S. Adversarial attacks on neural networks for graph data[C]//Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019.
[13] DAI J Z, ZHU W F, LUO X F. A targeted universal attack on graph convolutional network by using fake nodes[J]. Neural Processing Letters, 2022, 54: 3321-3337.
[14] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//International Conference on Machine Learning, 2017: 1263-1272.
[15] ZANG X, XIE Y, CHEN J. Graph universal adversarial attacks: a few bad actors ruin graph learning models[J]. arXiv:2002.04784, 2020.
[16] DAI H J, LI H, TIAN T, et al. Adversarial attack on graph structured data[J]. arXiv:1806.02371, 2018. |