[1] 蹇诗婕, 卢志刚, 杜丹, 等. 网络入侵检测技术综述[J]. 信息安全学报, 2020, 5(4): 96-122.
JIAN S J, LU Z G, DU D. Overview of network intrusion detection technology[J]. Journal of Cyber Security, 2020, 5(4): 96-122.
[2] 和湘, 刘晟, 姜吉国. 基于机器学习的入侵检测方法对比研究[J]. 信息网络安全, 2018, 18(5): 1-11.
HE X, LIU S, JIANG J G. Comparative study of intrusion detection methods based on machine learning[J].Netinfo Security, 2018, 18(5): 1-11.
[3] MUKHERJEE B, HEBERLEIN L T, LEVITT K N. Network intrusion detection[J]. IEEE Network, 1994, 8(3): 26-41.
[4] FERRAG M A, MAGLARAS L, MOSCHOYIANNIS S, et al. Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study[J]. Journal of Information Security and Applications, 2020, 50:102419.
[5] WHEELUS C, BOU-HARB E, ZHU X. Tackling class imbalance in cyber security datasets[C]//Proceedings of the 2018 IEEE International Conference on Information Reuse and Integration (IRI), 2018.
[6] LI W, SUN S, ZHANG S, et al. Cost-sensitive approach to improve the HTTP traffic detection performance on imbalanced data[J]. Security and Communication Networks, 2021, 2021: 1-11.
[7] ZONG W, HUANG G B, CHEN Y. Weighted extreme learning machine for imbalance learning[J]. Neurocomputing, 2013, 101: 229-242.
[8] BAHNSEN A C, AOUADA D, OTTERSTEN B. Example-dependent cost-sensitive decision trees[J]. Expert Systems with Applications, 2015, 42(19): 6609-6619.
[9] 曹雅茜, 黄海燕. 基于代价敏感大间隔分布机的不平衡数据分类算法[J]. 华东理工大学学报 (自然科学版), 2019, 45(4): 606-613.
CAO Y X, HUANG H Y.Imbalanced data classification based on cost-sensitive large margin distribution machine[J].Journal of East China University of Science and Technology, 2019, 45(4): 606-613.
[10] 周瑜, 顾宏. 面向不平衡数据的逻辑回归偏标记学习算法[J]. 大连理工大学学报, 2017, 57(2): 184-188.
ZHOU Y, GU H.Partial label learning algorithm for imbalanced data based on logistic regression[J].Journal of Dalian University of Technology, 2017, 57(2): 184-188.
[11] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[12] HE H, BAI Y, GARCIA E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008.
[13] YAN B, HAN G. LA-GRU: building combined intrusion detection model based on imbalanced learning and gated recurrent unit neural network[J]. Security and Communication Networks, 2018, 2018(1):6026878.
[14] ANAND A, PUGALENTHI G, FOGEL G B, et al. An approach for classification of highly imbalanced data using weighting and undersampling[J]. Amino Acids, 2010, 39: 1385-1391.
[15] KOZIARSKI M. Radial-based undersampling for imbalanced data classification[J]. Pattern Recognition, 2020, 102: 107262.
[16] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[17] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014.
[18] BAEK S, KIM K I, KIM T K. Weakly-supervised domain adaptation via gan and mesh model for estimating 3D hand poses interacting objects[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
[19] ZHOU H, CAI R, QUAN T, et al. 3D high resolution generative deep?learning network for fluorescence microscopy imaging[J]. Optics Letters, 2020, 45(7): 1695-1698.
[20] MOKHAYERI F, KAMALI K, GRANGER E. Cross-domain face synthesis using a controllable GAN[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020.
[21] KOWALSKI M, GARBIN S J, ESTELLERS V, et al. Config: controllable neural face image generation[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV 2020) , Glasgow, UK, August 23-28, 2020.
[22] FATHI-KAZEROONI S, ROJAS-CESSA R. GAN tunnel: network traffic steganography by using GANs to counter internet traffic classifiers[J]. IEEE Access, 2020, 8: 125345-125359.
[23] 潘一鸣, 林家骏. 基于生成对抗网络的恶意网络流生成及验证[J]. 华东理工大学学报 (自然科学版), 2019, 45(2): 344-350.
PAN Y M, LIN J J.Generation and verification of malicious network flow based on generative adversarial networks[J]. Journal of East China University of Science and Technology, 2019, 45(2): 344-350.
[24] ANDRESINI G, APPICE A, DE ROSE L, et al. GAN augmentation to deal with imbalance in imaging-based intrusion detection[J]. Future Generation Computer Systems, 2021, 123: 108-127.
[25] LEE J, PARK K. GAN-based imbalanced data intrusion detection system[J]. Personal and Ubiquitous Computing, 2021, 25: 121-128.
[26] YILMAZ I, MASUM R, SIRAJ A. Addressing imbalanced data problem with generative adversarial network for intrusion detection[C]//Proceedings of the 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), 2020.
[27] 孙佳佳, 李承礼, 常德显, 等. 基于生成对抗网络的入侵检测类别不平衡问题数据增强方法[J]. 科学技术与工程, 2022, 22(18): 7965-7971.
SUN J J, LI C L, CHANG D X.Data augmentation method for intrusion detection imbalance problem using generative adversarial networks[J]. Science Technology and Engineering, 2022, 22(18): 7965-7971.
[28] 王华忠, 田子蕾. 基于改进CGAN算法的工控系统入侵检测方法[J]. 信息网络安全, 2023, 23(1): 36-43.
WANG H Z, TIAN Z L. Intrusion detection method of ICS based on improved CGAN algorithm[J]. Netinfo Security, 2023, 23(1): 36-43.
[29] YU L, ZHANG W, WANG J, et al. SeqGAN: sequence generative adversarial nets with policy gradient[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2017.
[30] 张菲菲. 基于过采样的不平衡数据集成分类算法研究 [D].郑州:郑州大学, 2018.
ZHANG F F.Research of imbalanced data ensemble classification algorithm based on oversampling[D]. Zhengzhou: Zhengzhou University, 2018.
[31] BATISTA G E, PRATI R C, MONARD M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 20-29.
[32] YAN S, SMITH J S, LU W, et al. Hierarchical multi-scale attention networks for action recognition[J]. Signal Processing: Image Communication, 2018, 61: 73-84.
[33] MIYATO T, KOYAMA M. cGANs with projection discriminator[J]. arXiv:1802.05637, 2018.
[34] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein gans[C]//Advances in Neural Information Processing Systems, 2017.
[35] MOUSTAFA N, SLAY J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]//Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), 2015.
[36] CHANG L, BRANCO P. Graph-based solutions with residuals for intrusion detection: the modified E-GraphSAGE and E-ResGAT algorithms[J]. arXiv:2111.13597, 2021.
[37] AL OLAIMAT M, LEE D, KIM Y, et al. A learning-based data augmentation for network anomaly detectio[C]//Proceedings of the 2020 29th International Conference on Computer Communications and Networks (ICCCN), 2020. |