[1] SHI Y, LEI M L, YANG H, et al. Diffusion network embedding[J]. Pattern Recognition, 2019, 88(2): 518-531.
[2] ZHANG D, YIN J, ZHU X, et al. Network representation learning: a survey[J]. IEEE Transactions on Big Data, 2018, 6(1): 3-28.
[3] CHEN J, WU Y, FAN L, et al. N2VSCDNNR: a local recommender system based on node2vec and rich information network[J]. IEEE Transactions on Computational Social Systems, 2019, 6(3): 456-466.
[4] XIE Y, YU B, LYU S Z, et al. A survey on heterogeneous network representation learning[J]. Pattern Recognition, 2021, 116(7): 107936.
[5] TISSOT H C. Novel perspectives and applications of knowledge graph embeddings: from link prediction to risk assessment and explain ability[C]//Proceedings of the 2021 International Conference on Research Challenges in Information Science. Cham: Springer, 2021: 91-106.
[6] PEROZZI B, AI-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.
[7] GROVER A, LESKOVER J. Node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864.
[8] TANG J, QU M, WANG M, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. New York: ACM, 2015: 1067-1077.
[9] LIAO L Z, HE X N, ZHANG H W, et al. Attributed social network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12): 2257-2270.
[10] AHMED H, ALI S. Research on bipartite network embedding with auxiliary information[C]//Proceedings of the 10th International Conference on Software Engineering and Service Science, Beijing, 2019: 1-6.
[11] 赵雪莉, 卢光跃, 吕少卿, 等. 结合属性信息的二分网络表示学习[J]. 计算机科学与探索, 2021, 15(3): 495-505.
ZHAO X L, LU G Y, LYU S Q, et al. Attributed bipartite network representation learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 495-505.
[12] 李婷婷, 吕少卿, 赵雪莉, 等. 融合多层次结构信息的深度属性二分网络表示学习[J]. 计算机应用研究, 2021, 38(11): 3316-3321.
LI T T, LYU S Q, ZHAO X L, et al. Deep attributed bipartite network incorporating with multilevel structure information[J].Application Research of Computers, 2021, 38(11): 3316-3321.
[13] MILO R, SHEN-ORR S, ITZKOVITZ S, et al. Network motifs: simple building blocks of complex networks[J]. Science, 2002, 298(5594): 824-827.
[14] ZHANG F, BU T M. CN-Motifs perceptive graph neural networks[J]. IEEE Access, 2021, 9: 151285-151293.
[15] WANG L, REN J, XU B, et al. MODEL: motif-based deep feature learning for link prediction[J]. IEEE Transactions on Computational Social Systems, 2020, 7(2): 503-516.
[16] LI X, WEI W, FENG X, et al. Representation learning of graphs using graph convolutional multilayer networks based on motifs[J]. Neurocomputing, 2021, 464(5): 218-226.
[17] DAREDDY M R, DAS M, YANG H. Motif2vec: motif aware node representation learning for heterogeneous networks[C]//Proceedings of the 2019 IEEE International Conference on Big Data, 2019: 1052-1059.
[18] YU Y, LU Z, LIU J, et al. RUM: network representation learning using motifs[C]//Proceedings of the 35th IEEE International Conference on Data Engineering, 2019: 1382-1393.
[19] XIE T, HE C, REN X, et al. L-BGNN: layerwise trained bipartite graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10711-10723.
[20] XUE H, YANG L, RAJAN V, et al. Multiplex bipartite network embedding using dual hypergraph convolutional networks[C]//Proceedings of the Web Conference 2021, Slovenia, 2021: 1649-1660.
[21] YANG R, SHI J, HUANG K, et al. Scalable and effective bipartite network embedding[C]//Proceedings of the 2022 International Conference on Management of Data, 2022: 1977-1991.
[22] GAO M, HE X, CHEN L, et al. Learning vertex representations for bipartite networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(1): 379-393.
[23] CAO J, LIN X, GUO S, et al. Bipartite graph embedding via mutual information maximization[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining, 2021: 635-643. |