Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (17): 48-61.DOI: 10.3778/j.issn.1002-8331.2403-0114
• Research Hotspots and Reviews • Previous Articles Next Articles
TANG Zengjin, XU Zhenshun, SU Mengyao, LIU Na, WANG Zhenbiao, ZHANG Wenhao
Online:
2024-09-01
Published:
2024-08-30
唐增金,徐贞顺,苏梦瑶,刘纳,王振彪,张文豪
TANG Zengjin, XU Zhenshun, SU Mengyao, LIU Na, WANG Zhenbiao, ZHANG Wenhao. Review of Frequent Temporal Pattern Mining Methods[J]. Computer Engineering and Applications, 2024, 60(17): 48-61.
唐增金, 徐贞顺, 苏梦瑶, 刘纳, 王振彪, 张文豪. 频繁时序模式挖掘方法综述[J]. 计算机工程与应用, 2024, 60(17): 48-61.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2403-0114
[1] QI H, ZHOU Z, YUAN J, et al. Accident pattern recognition in subway construction for the provision of customized safety measures[J]. Tunnelling and Underground Space Technology, 2023, 137: 105157. [2] SHU X, YE Y. Knowledge discovery: methods from data mining and machine learning[J]. Social Science Research, 2023, 110: 102817. [3] REHMAN S U, ALNAZZAWI N, ASHRAF J, et al. Efficient top-k identical frequent itemsets mining without support threshold parameter from transactional datasets produced by IoT-based smart shopping carts[J]. Sensors, 2022, 22(20): 8063. [4] PRAVEEN KUMAR B, PAULRAJ D. Frequent mining analysis using pattern mining utility incremental algorithm based on relational query process[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12: 4745-4755. [5] ZHOU Y, HAO J K, DUVAL B. Frequent pattern-based search: a case study on the quadratic assignment problem[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 52(3): 1503-1515. [6] ZHANG Z, HUANG J. Fast frequent patterns mining by multiple sampling with tight guarantee under Bayesian statistics[J]. IEEE Transactions on Cybernetics, 2023, 53(5): 2993-3006. [7] MEI?NER K, RIECK J. Strategic planning support for road safety measures based on accident data mining[J]. IATSS Research, 2022, 46(3): 427-440. [8] JAZAYERI A, YANG C C, CAPAN M. Frequent temporal patterns of physiological and biological biomarkers and their evolution in sepsis[J]. Artificial Intelligence in Medicine, 2023, 143: 102576. [9] ARI N S B, MOSKOVITCH R. Predictive temporal patterns discovery[J]. Expert Systems with Applications, 2023, 226: 119974. [10] JAMSHEELA O, RAJU G. An improved frequent pattern tree: the child structured frequent pattern tree CSFP-tree[J]. Pattern Analysis and Applications, 2023, 26(2): 437-454. [11] NGUYEN H, LE N, BUI H, et al. A new approach for efficiently mining frequent weighted utility patterns[J]. Applied Intelligence, 2023, 53(1): 121-140. [12] 韩萌, 丁剑. 数据流频繁模式挖掘综述[J]. 计算机应用, 2019, 39(3): 719-727. HAN M, DING J. Survey of frequent pattern mining over data streams[J]. Computer Applications, 2019, 39(3): 719-727. [13] 王少峰, 韩萌, 贾涛, 等. 数据流高效用模式挖掘综述[J]. 计算机应用研究, 2020, 37(9): 2571-2578. WANG S F, HAN M, JIA T, et al. A review of efficient pattern mining in data streams[J]. Application Research of Computers, 2020, 37(9): 2571-2578. [14] WU Y, ZHAO X, LI Y, et al. OPR-Miner: order-preserving rule mining for time series[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(11): 11722-11735. [15] WANG L, MENG J, XU P, et al. Mining temporal association rules with frequent itemsets tree[J]. Applied Soft Computing, 2018, 62: 817-829. [16] GULZAR K, MEMON M, MOHSIN S M, et al. An efficient healthcare data mining approach using apriori algorithm: a case study of eye disorders in young adults[J]. Information, 2023, 14: 203. [17] CHEN Y, YUAN P, QIU M, et al. An indoor trajectory frequent pattern mining algorithm based on vague grid sequence[J]. Expert Systems with Applications, 2019, 118: 614-624. [18] PEI J, HAN J, WANG W. Mining sequential patterns with constraints in large databases[C]//Proceedings of the 11th International Conference on Information and Knowledge Management, 2002: 18-25. [19] VANAMALA S, SREE P L, BHAVANI S. Eclat_RPGrowth: finding rare patterns using vertical mining and rare pattern tree[C]//Proceedings of the Computer Networks, Big Data and IoT, 2021: 161-176. [20] AMARANATHA REDDY P, KRISHNA PRASAD M H M. High utility item-set mining from retail market data stream with various discount strategies using EGUI-tree[J]. International Journal of Software Innovation, 2021, 10(1): 1-15. [21] AHMED S A, NATH B. ISSP-tree: an improved fast algorithm for constructing a complete prefix tree using single database scan[J]. Expert Systems with Applications, 2021, 185(3): 115603. [22] AHMED S A, NATH B. Identification of adverse disease agents and risk analysis using frequent pattern mining[J]. Information Sciences, 2021, 576(2): 609-641. [23] WANG Y, WU Y, LI Y, et al. Self-adaptive nonoverlapping sequential pattern mining[J]. Applied Intelligence, 2022, 52(6): 6646-6661. [24] WU Y, YUAN Z, LI Y, et al. NWP-Miner: nonoverlapping weak-gap sequential pattern mining[J]. Information Sciences: an International Journal, 2022, 588: 124-141. [25] WU Y, HU Q, LI Y, et al. OPP-Miner: order-preserving sequential pattern mining for time series[J]. IEEE Transactions on Cybernetics, 2023, 53(5): 3288-3300. [26] LV Z, WANG X, CHENG Z, et al. A new approach to COVID-19 data mining: a deep spatial-temporal prediction model based on tree structure for traffic revitalization index[J]. Data & Knowledge Engineering, 2023, 146: 102193. [27] SINGH K, BISWAS B. Efficient algorithm for mining high utility pattern considering length constraints[J]. International Journal of Data Warehousing and Mining, 2019, 15(3): 1-27. [28] AGRAWAL R, SRIKANT R. Mining sequential patterns[C]//Proceedings of the 11th International Conference on Data Engineering, 1995: 3-14. [29] TRUONG T, DUONG H, LE B, et al. Frequent high minimum average utility sequence mining with constraints in dynamic databases using efficient pruning strategies[J]. Applied Intelligence, 2022, 52(6): 6106-6128. [30] FEREMANS L, CULE B, GOETHALS B. Efficient pattern-based anomaly detection in a network of multivariate devices[J]. arXiv:2305.05538, 2023. [31] HU W, WANG Z, WANG J. A priority-aware sequential pattern mining method for detection of compact patterns from alarm floods[J]. Journal of Process Control, 2023, 129: 103041. [32] WANG J, JIA R, ZHOU J, et al. Mining sequential alarm pattern based on the incremental causality PrefixSpan algorithm[J]. IEEE Transactions on Artificial Intelligence, 2023, 4(4): 612-623. [33] 袁泉, 唐成亮, 徐雲鹏. 基于长度约束的蝙蝠高效用项集挖掘算法[J]. 计算机应用, 2023, 43(5): 1473-1480. YUAN Q, TANG C L, XU Y P. Bat algorithm for high untility itemset mining based on length constraint[J]. Journal of Computer Applications, 2023, 43 (5): 1473-1480. [34] ZHAO L, LI Y, LI S, et al. A frequency item mining based embedded feature selection algorithm and its application in energy consumption prediction of electric bus[J]. Energy, 2023, 271: 126999. [35] HAN J, PEI J, MORTAZAVI-ASL B, et al. PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth[C]//Proceedings of the 17th International Conference on Data Engineering, 2001: 215-224. [36] LE T, NGUYEN A, HUYNH B, et al. Mining constrained inter-sequence patterns: a novel approach to cope with item constraints[J]. Applied Intelligence, 2018, 48(5): 1327-1343. [37] VAN T, LE B. Mining sequential rules with itemset constraints[J]. Applied Intelligence, 2021, 51(10): 7208-7220. [38] WANG W, TIAN J, LV F, et al. Mining frequent pyramid patterns from time series transaction data with custom constraints[J]. Computers & Security, 2021, 100: 102088. [39] 陈平, 王利钢. 基于项约束的关联规则频繁项集挖掘方法研究[J]. 信息化研究, 2021, 47(5): 18-22. CHEN P, WANG L G. Research constraints frequent item sets mining algorithm based on transaction binary[J]. Informatization Research, 2021, 47(5): 18-22. [40] DUONG H, TRUONG T, TRAN A, et al. Fast generation of sequential patterns with item constraints from concise representations[J]. Knowledge and Information Systems, 2020, 62(6): 2191-2223. [41] NGUYEN A, NGUYEN N T, NGUYEN L T T, et al. Mining inter-sequence patterns with itemset constraints[J]. Applied Intelligence, 2023, 53: 19827-19842. [42] CHEN C H, CHOU H, HONG T P, et al. Cluster-based membership function acquisition approaches for mining fuzzy temporal association rules[J]. IEEE Access, 2020, 8: 123996-124006. [43] RAHMAN M M, AHMED C F, LEUNG C K S. Mining weighted frequent sequences in uncertain databases[J]. Information Sciences, 2019, 479: 76-100. [44] MOU N, WANG H, ZHANG H, et al. Association rule mining method based on the similarity metric of tuple-relation in indoor environment[J]. IEEE Access, 2020, 8: 52041-52051. [45] DU X, YU F. A fast algorithm for mining temporal association rules in a multi-attributed graph sequence[J]. Expert Systems with Applications, 2022, 192: 116390. [46] 姜建武, 王博. 高维数据组合关联关系挖掘方法[J]. 科学技术与工程, 2023, 23(4): 1615-1624. JIANG J W, WANG B. Combinatorial association mining method for high-dimensional data[J]. Science Technology and Engineering, 2023, 23 (4): 1615-1624. [47] WEI L, GUO D, CHEN Z, et al. Forecasting short-term passenger flow of subway stations based on the temporal pattern attention mechanism and the long short-term memory network[J]. ISPRS International Journal of Geo-Information, 2023, 12(1): 25. [48] DUONG T H, JANOS D, THI V D, et al. An algorithm for mining high utility sequential patterns with time interval[J]. Cybernetics and Information Technologies, 2019, 19(4): 3-16. [49] RITIKA, GUPTA S K. HUFTI-SPM: high-utility and frequent time-interval sequential pattern mining from transactional databases[J]. International Journal of Data Science and Analytics, 2022, 13: 239-250. [50] WANG C, ZHENG X. Application of improved time series Apriori algorithm by frequent itemsets in association rule data mining based on temporal constraint[J]. Evolutionary Intelligence, 2020, 13: 39-49. [51] 梁天恺, 曾碧, 刘建圻. 基于FP-Growth的智能家居用户时序关联操控习惯挖掘方法[J]. 计算机应用研究, 2020, 37(2): 385-389. LIANG T K, ZENG B, LIU J Q. FP-Growth-based users temporal association control habits mining method for smart home[J]. Application Research of Computers, 2020, 37(2): 385-389. [52] BUSTIO-MARTíNEZ L, CUMPLIDO R, LETRAS M, et al. FPGA/GPU-based acceleration for frequent itemsets mining: a comprehensive review[J]. ACM Computing Surveys (CSUR), 2021, 54(9): 1-35. [53] M?RCHEN F. Unsupervised pattern mining from symbolic temporal data[J]. ACM SIGKDD Explorations Newsletter, 2007, 9(1): 41-55. [54] 张广路, 雷景生, 吴兴惠. 界标窗口中数据流频繁模式挖掘算法研究[J]. 计算机工程, 2012, 38(1): 55-58. ZHANG G L, LEI J S, WU X H. Research on data stream frequent pattern mining algorithms in landmark window[J]. Computer Engineering, 2012, 38(1): 55-58. [55] 吴媚, 高玲. 基于界标窗口的数据流频繁项集挖掘算法的改进[J]. 山东师范大学学报 (自然科学版), 2014(3): 21-25. WU M, GAO L. Improved algorithms for mining frequent itemsets in data stream based on landmark window[J]. Journal of Shandong Normal University(Natural Science), 2014(3): 21-25. [56] 闻英友, 王少鹏, 赵宏. 界标窗口下数据流最大规范模式挖掘算法研究[J]. 计算机研究与发展, 2017, 54(1): 94-110. WEN Y Y, WANG S P, ZHAO H. The maximal regular patterns mining algorithm based on landmark window over data stream[J]. Journal of Computer Research and Development, 2017, 54(1): 94-110. [57] LI D, WANG C, LI L, et al. Collaborative filtering algorithm with social information and dynamic time windows[J]. Applied Intelligence, 2022, 52(5): 5261-5272. [58] HAN M, DING J, LI J. TDMCS: an efficient method formining closed frequent patterns over data streams based on time decay model[J]. International Arab Journal of Information Technology, 2017, 14(6): 851-860. [59] YUN U, KIM D, YOON E, et al. Damped window basedhigh average utility pattern mining over data streams[J]. Knowledge-Based Systems, 2017, 144: 188-205. [60] KIM H, YUN U, BAEK Y, et al. Damped sliding basedutility oriented pattern mining over stream data[J]. Knowledge-Based Systems, 2021, 213: 106653. [61] LU X, JIN S, WANG X, et al. A mining frequent itemsets algorithm in stream data based on sliding time decay window[C]//Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition, 2020: 18-24. [62] AN Y, TANG K, WANG J. Time-aware multi-type data fusion representation learning framework for risk prediction of cardiovascular diseases[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 19(6): 3725-3734. [63] BUI H, NGUYEN-HOANG T A, VO B, et al. A sliding window-based approach for mining frequent weighted patterns over data streams[J]. IEEE Access, 2021, 99: 56318-56329. [64] CHEN J, LI P, FANG W, et al. Fuzzy frequent pattern mining algorithm based on weighted sliding window and type-2 fuzzy sets over medical data stream[J]. Wireless Communications and Mobile Computing, 2021, 2021: 1-17. [65] 陈玉, 戴华, 李博涵, 等. 面向移动对象的松散型传染模式挖掘方法[J]. 浙江大学学报 (工学版), 2022, 56(2): 280-287. CHEN Y, DAI H, LI B H, et al. Loose infection pattern mining algorithms over moving objects[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(2): 280-287. [66] YIN Y, LI P, CHEN J. A variable sliding window algorithm based on concept drift for frequent pattern mining over data streams[C]//Proceedings of the 2022 IEEE 28th International Conference on Parallel and Distributed Systems, 2023: 818-825. [67] SI J, YANG J, XIANG Y, et al. TrajBERT: BERT-based trajectory recovery with spatial-temporal refinement for implicit sparse trajectories[J]. IEEE Transactions on Mobile Computing, 2023, 23(5): 4849-4860. [68] ZHANG C, ZHANG J, ZHAO Y, et al. Automated data mining framework for building energy conservation aided by generative pre-trained transformers (GPT)[J]. Energy and Buildings, 2024, 305: 113877. |
[1] | LIU Shipeng, NING Dejun, MA Jue. LSTformer Model for Photovoltaic Power Prediction [J]. Computer Engineering and Applications, 2024, 60(9): 317-325. |
[2] | ZHUANG Junxi, WANG Qi, LAI Yingxu, LIU Jing, JIN Xiaoning. Behavior-Driven Performance Early Warning Model Based on Ternary Deep Fusion [J]. Computer Engineering and Applications, 2024, 60(9): 346-356. |
[3] | WANG Zhenbiao, XU Zhenshun, LIU Na, ZHANG Wenhao, TANG Zengjin, WANG Zheng’an. Review of Supervised Topic Models and Applications [J]. Computer Engineering and Applications, 2024, 60(8): 56-68. |
[4] | KE Jianchao, MENG Yanping. Design of Multi-Owner Collaborative Distribution Logistics Network Under Time Window Assignment Strategy [J]. Computer Engineering and Applications, 2024, 60(18): 324-336. |
[5] | TANG Hong, LIU Bin, ZHANG Jing, JIN Zhezheng. Point of Interest Recommendation Methods for Fused Temporal Gated Graph Neural Networks [J]. Computer Engineering and Applications, 2024, 60(16): 124-132. |
[6] | GAO Xingwang, REN Lisheng, WANG Fang. Path Planning Study of Mobile Spraying Robot in Tomato Greenhouse [J]. Computer Engineering and Applications, 2024, 60(16): 325-332. |
[7] | LI Junjie, YI Shi, HE Runhua, LIU Xi. Semantic Segmentation Method of UAV Image Based on Window Attention Aggregation Swin Transformer [J]. Computer Engineering and Applications, 2024, 60(15): 198-210. |
[8] | JIANG Peihe, WANG Jing, SANG Zhongqi, LIN Lifeng. Research on Indoor Service Robot Path Planning Based on Improved A* and DWA [J]. Computer Engineering and Applications, 2024, 60(15): 327-335. |
[9] | LUO Zhengzhi, HAN Yike, ZHANG, Xin, ZOU Yubo. Research on Path Planning of Inspection Robot with Improved RRT-Connect and DWA Algorithm [J]. Computer Engineering and Applications, 2024, 60(15): 344-354. |
[10] | HE Jiajia, XU Yang, ZHANG Yongdan. Improved U-net++ Semantic Segmentation Method for Remote Sensing Images [J]. Computer Engineering and Applications, 2024, 60(13): 255-265. |
[11] | LIU Shujuan, HAN Meng, GAO Zhihui, MU Dongliang, LI Ang. Constrained Cross-Level High Utility Itemsets Mining over Data Stream [J]. Computer Engineering and Applications, 2024, 60(13): 287-300. |
[12] | WU Yanwen, TAN Xichen, GE Di, HAN Yuan, XIONG Xujie, CHEN Yudi. Combining Reconstruction and Graph Prediction for Multi-Dimensional Time Series Anomaly Detection Framework [J]. Computer Engineering and Applications, 2024, 60(13): 301-310. |
[13] | CHEN Jiale, CHEN Xu, JING Yongjun, WANG Shuyang. Survey of Application of Graph Neural Network in Anomaly Detection [J]. Computer Engineering and Applications, 2024, 60(13): 51-65. |
[14] | KONG Weiwei. Medical Image Fusion Method Using SML and Side Window Filter in Framelet Transform [J]. Computer Engineering and Applications, 2024, 60(13): 237-245. |
[15] | CHEN Kai, GONG Yiguang. Hybrid Multiple-Objective Grey Wolf Algorithm Solving Multi-Objective Vehicle Routing Problem with Time Windows [J]. Computer Engineering and Applications, 2024, 60(11): 309-318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||