Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (8): 56-68.DOI: 10.3778/j.issn.1002-8331.2309-0030
• Research Hotspots and Reviews • Previous Articles Next Articles
WANG Zhenbiao, XU Zhenshun, LIU Na, ZHANG Wenhao, TANG Zengjin, WANG Zheng’an
Online:
2024-04-15
Published:
2024-04-15
王振彪,徐贞顺,刘纳,张文豪,唐增金,王正安
WANG Zhenbiao, XU Zhenshun, LIU Na, ZHANG Wenhao, TANG Zengjin, WANG Zheng’an. Review of Supervised Topic Models and Applications[J]. Computer Engineering and Applications, 2024, 60(8): 56-68.
王振彪, 徐贞顺, 刘纳, 张文豪, 唐增金, 王正安. 监督式主题模型及其应用综述[J]. 计算机工程与应用, 2024, 60(8): 56-68.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2309-0030
[1] BLEI D M. Probabilistic topic models[J]. Communications of the ACM, 2012, 55(4): 77-84. [2] ALGHAMDI R, ALFALQI K. A survey of topic modeling in text mining[J]. Int J Adv Comput Sci Appl (IJACSA), 2015, 6(1). [3] CHURCHILL R, SINGH L. The evolution of topic modeling[J]. ACM Computing Surveys, 2022, 54(10S): 1-35. [4] 韩亚楠, 刘建伟, 罗雄麟.概率主题模型综述[J].计算机学报, 2021, 44(6): 1095-1139. HAN Y N, LIU J W, LUO X L.A survey on probabilistic topic model[J].Chinese Journal of Computers, 2021, 44(6): 1095-1139. [5] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine Learning Research, 2003, 3(1): 993-1022. [6] MCAULIFFE J, BLEI D. Supervised topic models[C]//Advances in Neural Information Processing Systems, 2007. [7] CHEN Z, LIU B. Mining topics in documents: standing on the shoulders of big data[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 1116-1125. [8] MIMNO D, WALLACH H, TALLEY E, et al. Optimizing semantic coherence in topic models[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, 2011: 262-272. [9] HOYLE A, GOEL P, HIAN-CHEONG A, et al. Is automated topic model evaluation broken? the incoherence of coherence[C]//Advances in Neural Information Processing Systems, 2021: 2018-2033. [10] WILCOX K T, JACOBUCCI R, ZHANG Z, et al. Supervised latent Dirichlet allocation with covariates: a Bayesian structural and measurement model of text and covariates[J]. Psychological Methods, 2021.DOI:10.31234/osf.io/62tc3. [11] VU D, TRUONG K, NGUYEN K, et al. Revisiting supervised word embeddings[J]. J Inf Sci Eng, 2022, 38(2): 413-427. [12] XU W, EGUCHI K. A supervised topic embedding model and its application[J]. Plos One, 2022, 17(11): e0277104. [13] CHURCHILL R, SINGH L. Topic-noise models: modeling topic and noise distributions in social media post collections[C]//Proceedings of the 21st IEEE International Conference on Data Mining, 2021: 71-80. [14] CHURCHILL R, SINGH L, RYAN R, et al. A guided topic-noise model for short texts[C]//Proceedings of the 31st ACM World Wide Web Conference, 2022: 2870-2878. [15] RAHIMI M, ZAHEDI M, MASHAYEKHI H. A probabilistic topic model based on short distance Co-occurrences[J]. Expert Systems with Applications, 2022, 193: 116518. [16] GROOTENDORST M. BERTopic: neural topic modeling with a class-based TF-IDF procedure[J]. arXiv:2203.05794, 2022 [17] ZHAO H, PHUNG D, HUYNH V, et al. Topic modelling meets deep neural networks: a survey[J]. arXiv:2103.00498, 2021. [18] FENG J, ZHANG Z, DING C, et al. Context reinforced neural topic modeling over short texts[J]. Information Sciences, 2022, 607: 79-91. [19] LIU L, HUANG H, GAO Y, et al. Improving neural topic modeling via Sinkhorn divergence[J]. Information Processing and Management, 2022, 59(3): 102864. [20] YANG Y, ZHANG K, FAN Y. sDTM: a supervised bayesian deep topic model for text analytics[J]. Information Systems Research, 2023, 34(1): 137-156. [21] MURSHED B A H, MALLAPPA S, ABAWAJY J, et al. Short text topic modelling approaches in the context of big data: taxonomy, survey, and analysis[J]. Artificial Intelligence Review, 2023, 56(6): 5133-5260. [22] WANG C, BLEI D M, FEI-FEI L. Simultaneous image classification and annotation[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 1903-1910. [23] RAMAGE D, HALL D, NALLAPATI R, et al. Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, 2009: 248-256. [24] ZHU J, AHMED A, XING E P. MedLDA: maximum margin supervised topic models for regression and classification[C]//Proceedings of the 26th Annual International Conference on Machine Learning, 2009: 1257-1264. [25] CHEN J, HE J, SHEN Y, et al. End-to-end learning of LDA by mirror-descent back propagation over a deep architecture[C]//Advances in Neural Information Processing Systems, 2015. [26] ZHANG Y, MA J, WANG Z, et al. LF-LDA: a topic model for multi-label classification[C]//Advances in Internetworking, Data & Web Technologies, 2018. [27] WANG W, GUO B, SHEN Y, et al. Twin labeled LDA: a supervised topic model for document classification[J]. Applied Intelligence, 2020, 50(12): 4602-4615. [28] ZHANG G, ZHENG H, LIU X. Co-STM text categorization method based on supervised topic model[C]//Proceedings of the 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering, 2021. [29] NGUYEN T, TUAN L A. Contrastive learning for neural topic model[C]//Proceedings of the 35th Conference on Neural Information Processing Systems, 2021: 11974-11986. [30] TANG R, YANG C, WANG Y. A cross-domain multimodal supervised latent topic model for item tagging and cold-start recommendation[J]. IEEE MultiMedia, 2023, 30(3): 48-62. [31] ZHU B, CAI Y, REN H. Graph neural topic model with commonsense knowledge[J]. Information Processing & Management, 2023, 60(2): 103215. [32] LI P, TSENG C, ZHENG Y, et al. Guided semi-supervised non-negative matrix factorization[J]. Algorithms, 2022, 15(5): 136. [33] LI X, WANG B, WANG Y, et al. Weakly supervised prototype topic model with discriminative seed words: modifying the category prior by self-exploring supervised signals[J]. Soft Computing, 2023, 27(9): 5397-5410. [34] ADELANI D I, MASIAK M, AZIME I A, et al. Masakha-NEWS: news topic classification for african languages[J]. arXiv:2304.09972, 2023. [35] LI Y, NAIR P, LU X H, et al. Inferring multimodal latent topics from electronic health records[J]. Nature Communications, 2020, 11(1): 2536. [36] SONG Z, TORAL X S, XU Y, et al. Supervised multi-specialist topic model with applications on large-scale electronic health record data[C]//Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, 2021: 1-26. [37] WANG Y, BENAVIDES R, DIATCHENKO L, et al. A graph-embedded topic model enables characterization of diverse pain phenotypes among UK biobank individuals[J]. Iscience, 2022, 25(6): 104390. [38] XIE Q, TIWARI P, GUPTA D, et al. Neural variational sparse topic model for sparse explainable text representation[J]. Information Processing and Management, 2021, 58(5): 102614. [39] ZHANG D C, LAUW H W. Variational graph author topic modeling[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022: 2429-2438. [40] ZHOU T, LAW K, CREIGHTON D. A weakly-supervised graph-based joint sentiment topic model for multi-topic sentiment analysis[J]. Information Sciences, 2022, 609: 1030-1051. [41] MALLICK T, BERGERSON J D, VERNER D R, et al. Analyzing the impact of climate change on critical infrastructure from the scientific literature: a weakly supervised NLP approach[J]. arXiv:2302.01887, 2023. [42] COPUR-GENCTURK Y, CHOI H J, COHEN A. Investigating teachers’ understanding through topic modeling: a promising approach to studying teachers’ knowledge[J]. Journal of Mathematics Teacher Education, 2023, 26(3): 281-302. [43] ZHANG Y, ZHANG Y, MICHALSKI M, et al. Effective seed-guided topic discovery by integrating multiple types of contexts[C]//Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023: 429-437. [44] BLEI D M, LAFFERTY J D. Dynamic topic models[C]//Proceedings of the 23rd International Conference on Machine Learning, 2006: 113-120. [45] NALLAPATI R M, DITMORE S, LAFFERTY J D, et al. Multiscale topic tomography[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007: 520-529. [46] WANG C, BLEI D M, HECKERMAN D. Continuous time dynamic topic models[C]//Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, 2008: 579-586. [47] IWATA T, WATANABE S, YAMADA T, et al. Topic tracking model for analyzing consumer purchase behavior[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligence, 2009: 1427-1432. [48] GOU Z, HAN L, SUN L, et al. Constructing dynamic topic models based on variational autoencoder and factor graph[J]. IEEE Access, 2018, 6: 53102-53111. [49] GOU Z, LI Y, HUO Z. A method for constructing supervised time topic model based on variational autoencoder[J]. Scientific Programming, 2021(12): 1-11. [50] SHAHBAZI Z, BYUN Y C. Topic prediction and knowledge discovery based on integrated topic modeling and deep neural networks approaches[J]. Journal of Intelligent and Fuzzy Systems, 2021, 41(1): 2441-2457. [51] CVEJOSKI K, SáNCHEZ R J, OJEDA C. Neural dynamic focused topic model[J]. arXiv:2301.10988, 2023. [52] MIAO Y, YU L, BLUNSOM P. Neural variational inference for text processing[C]//Proceedings of the 33rd International Conference on Machine Learning, 2016: 1727-1736. [53] RAHIMI H, NAACKE H, CONSTANTIN C, et al. ANTM: an aligned neural topic model for exploring evolving topics[J]. arXiv:2302.01501, 2023. [54] MARTINELLI D D. Evolution of Alzheimer’s disease research from a healthtech perspective: insights from text mining[J]. International Journal of Information Man-agement Data Insights, 2022, 2(2): 100089. [55] YU D, XIANG B. Discovering topics and trends in the field of artificial intelligence: using LDA topic modeling[J]. Expert Systems with Applications, 2023, 225: 120114. [56] LIU Y, WANG J, QIAN Y, et al. Dynamic topic model for tracking topic evolution and measuring popularity of scientific literature[C]//Proceedings of the 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC), 2021: 315-320. [57] HUANG Y, WANG R, HUANG B, et al. Sentiment classification of crowdsourcing participants’ reviews text based on LDA topic model[J]. IEEE Access, 2021, 9: 108131-108143. [58] LIANG Q, RANGANATHAN S, WANG K, et al. JST-RR model: joint modeling of ratings and reviews in sentiment-topic prediction[J]. Technometrics, 2023, 65(1): 57-69. [59] WANG Z, GAO P, CHU X. Sentiment analysis from Customer-generated online videos on product review using topic modeling and multi-attention BLSTM[J]. Advanced Engineering Informatics, 2022, 52: 101588. [60] PRAVEEN S, VAJROBOL V. Understanding the perceptions of healthcare researchers regarding ChatGPT: a study based on bidirectional encoder representation from transformers (BERT) sentiment analysis and topic modeling[J]. Annals of Biomedical Engineering, 2023, 51: 1654-1656. [61] SUN L. Automatic language identification using suprasegmental feature and supervised topic model[C]//Proceedings of the 2nd Symposium on Signal Processing Systems, 2020: 69-73. [62] ZHANG P, RAN H, JIA C, et al. A lightweight propagation path aggregating network with neural topic model for rumor detection[J]. Neurocomputing, 2021, 458: 468-477. [63] XIE Q, HUANG J, SAHA T, et al. GRETEL: graph contrastive topic enhanced language model for long document extractive summarization[J]. arXiv:2208.09982, 2022. [64] YANG N, JO J, JEON M, et al. Semantic and explainable research-related recommendation system based on semi-supervised methodology using BERT and LDA models[J]. Expert Systems with Applications, 2022, 190: 116209. [65] LI H, QIAN Y, JIANG Y, et al. A novel label-based multimodal topic model for social media analysis[J]. Decision Support Systems, 2023, 164: 113863. [66] 崔旭, 杨煜, 李姗姗.基于LDA模型的我国档案馆非物质文化遗产保护主题挖掘与演化分析——与非遗保护中心对比视角[J].图书情报工作, 2022, 66(23): 82-92. CUI X, YANG Y, LI S S.Topic mining and evolution analysis of intangible cultural heritage protection in chinese archives based on LDA model—comparison with intangible cultural heritage protection center[J]. Library and Information Service, 2022, 66(23): 82-92. [67] 王骞敏.国内电子陶瓷专利技术主题演化研究[J].中国陶瓷工业, 2023, 30(3): 59-65. WANG Q M.Topic Evolution of domestic electronic ceramic patented technology[J].China Ceramic Industry, 2023, 30(3): 59-65. [68] 陆振昇, 马超. 基于LDA模型的专利文本主题分析——以国内元宇宙领域为例[J]. 科技和产业, 2023, 23(11): 85-88. LU Z S, MA C. Technical topic analysis in patents based on LDA: taking metaverse in China as an example [J].Science Technology and Industry, 2023, 23(11): 85-88. |
[1] | ZHUANG Junxi, WANG Qi, LAI Yingxu, LIU Jing, JIN Xiaoning. Behavior-Driven Performance Early Warning Model Based on Ternary Deep Fusion [J]. Computer Engineering and Applications, 2024, 60(9): 346-356. |
[2] | FAN Shaobo, ZHANG Zhongjie, HUANG Jian. Association Rule Classification Method Strengthened by Decision Tree Pruning [J]. Computer Engineering and Applications, 2023, 59(5): 87-94. |
[3] | YANG Hanyu, ZHAO Xiaoyong, WANG Lei. Review of Data Normalization Methods [J]. Computer Engineering and Applications, 2023, 59(3): 13-22. |
[4] | LIN Yuan, WANG Kaiqiao, YANG Liang, LIN Hongfei, REN Lu, DING Kun. Sentiment Analysis of Peer Review Texts Based on Pu-Learning [J]. Computer Engineering and Applications, 2023, 59(3): 143-149. |
[5] | JIANG Hongxun, JIANG Junyi, LIANG Xun. Survey on Credit Card Transaction Fraud Detection Based on Machine Learning [J]. Computer Engineering and Applications, 2023, 59(21): 1-25. |
[6] | WU Chenwen, WANG Shasha, CAO Xuetong. Fuzzy Clustering Algorithm Combined with Cauchy Distribution and Ant Lion Algorithm [J]. Computer Engineering and Applications, 2023, 59(17): 91-98. |
[7] | TANG Hong, PENG Jinzhi, GUO Yanxia, LIU Jie. Empathetic Response Generation by Integrating Topic Prediction and Emotion Reasoning [J]. Computer Engineering and Applications, 2023, 59(14): 114-123. |
[8] | ZHANG Ran, WANG Xuezhi, WANG Jiajia, MENG Zhen. Survey on Computational Approaches for Drug-Target Interaction Prediction [J]. Computer Engineering and Applications, 2023, 59(12): 1-13. |
[9] | JIANG Yang, XUE Zhe, LI Ang. Research Scholar Interest Mining Method Based on Load Centrality [J]. Computer Engineering and Applications, 2023, 59(12): 94-99. |
[10] | ZHANG Yiyang, QIAN Yurong, TAO Wenbin, LENG Hongyong, LI Zichen, MA Mengnan. Survey of Attribute Graph Anomaly Detection Based on Deep Learning [J]. Computer Engineering and Applications, 2022, 58(19): 1-13. |
[11] | SHENG Jinchao, DU Mingjing, LI Yurui, SUN Jiarui. Cauchy Kernel-Based Density Peaks Clustering Algorithm for Categorical Data [J]. Computer Engineering and Applications, 2022, 58(18): 162-171. |
[12] | ZHOU Huiying, WANG Tinghua, ZHANG Daili. Research Progress of Multi-Label Feature Selection [J]. Computer Engineering and Applications, 2022, 58(15): 52-67. |
[13] | ZONG Xiaoping, TAO Zeze. Knowledge Tracing Model Based on Mastery Speed [J]. Computer Engineering and Applications, 2021, 57(6): 117-123. |
[14] | GAO Tianyu, WANG Qingrong, YANG Lei. Data Mining Model Based on Attribute Dependability Enhancement of Rough Set [J]. Computer Engineering and Applications, 2021, 57(3): 87-93. |
[15] | WU Di, ZHANG Mengtian, SHENG Long, HUANG Zhuyun, GU Mingxing. Microblog Hot Topic Evolution Based on Improved On-Line Biterm Topic Model [J]. Computer Engineering and Applications, 2021, 57(24): 179-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||