Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (17): 34-47.DOI: 10.3778/j.issn.1002-8331.2312-0206
• Research Hotspots and Reviews • Previous Articles Next Articles
LI Minggui, ZHOU Huanyin, GONG Liwen
Online:
2024-09-01
Published:
2024-08-30
李明桂,周焕银,龚利文
LI Minggui, ZHOU Huanyin, GONG Liwen. Comprehensive Review of ROV Underwater Obstacle Detection and Avoidance Technology[J]. Computer Engineering and Applications, 2024, 60(17): 34-47.
李明桂, 周焕银, 龚利文. ROV水下障碍物检测和避障技术的应用综述[J]. 计算机工程与应用, 2024, 60(17): 34-47.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2312-0206
[1] LI X, SHANG M, QIN H, et al. Fast accurate fish detection and recognition of underwater images with fast R-CNN[C]//Proceedings of the OCEANS 2015, 2015: 1-5. [2] WU Y, TA X, XIAO R, et al. Survey of underwater robot positioning navigation[J]. Applied Ocean Research, 2019, 90: 101845. [3] MA Q. Improving SAR target recognition performance using multiple preprocessing techniques[J]. Computational Intelligence and Neuroscience, 2021: 1-8. [4] LIN C, WANG H, YUAN J, et al. An improved recurrent neural network for unmanned underwater vehicle online obstacle avoidance[J]. Ocean Engineering, 2019, 189: 106327. [5] ZHANG L, LI C, SUN H. Object detection/tracking toward underwater photographs by remotely operated vehicles (ROVs)[J]. Future Generation Computer Systems, 2022, 126: 163-168. [6] YUAN X, GUO L, LUO C, et al. A survey of target detection and recognition methods in underwater turbid areas[J]. Applied Sciences, 2022, 12(10): 4898. [7] LUO X, CHEN L, ZHOU H, et al. A survey of underwater acoustic target recognition methods based on machine learning[J]. Journal of Marine Science and Engineering, 2023, 11(2): 384. [8] DAKHIL R A, KHAYEAT A R H. Review on deep learning technique for underwater object detection[J]. arXiv:2209. 10151, 2022. [9] ATANER E, ?ZDE? B, ?ZTüRK G, et al. Deep learning methods in unmanned underwater vehicles[J]. Avrupa Bilim ve Teknoloji Dergisi, 2020: 345-350. [10] FU T, ZHENG W, LI Z W, et al. mproving the detection accuracy of underwater obstacles based on a novel combined method of support vector regression and gravity gradient[J]. Remote Sensing, 2023, 15: 2188. [11] ANTONELLI G, CHIAVERINI S, FINOTELLO R, et al. Real-time path planning and obstacle avoidance for RAIS: an autonomous underwater vehicle[J]. IEEE Journal of Oceanic Engineering, 2001, 26(2): 216-227. [12] HONG S. A robust underwater object detection method using forward-looking sonar images[J]. Remote Sensing Letters, 2023, 14(5): 442-449. [13] ZHAO L, YUN Q, YUAN F, et al. YOLOv7-CHS: an emerging model for underwater object detection[J]. Journal of Marine Science and Engineering, 2023, 11(10): 1949. [14] REHMAN F U, ANDERLINI E, THOMAS G. Assessment of collision avoidance strategies for an underwater transportation system[J]. Journal of Robotics and Control, 2021, 2(5): 385-394. [15] LIU Z S, DING T F, WANG G. ROV based underwater blurred image restoration[J]. Journal of Ocean University of Qingdao, 2003, 2: 85-88. [16] 陆地, 陈伟, 魏庆宇. 基于多深度对抗网络的 ROV 水下目标检测[J]. 计算机时代, 2023(4): 5-10. LU D, CHEN W, WEI Q Y. Underwater image enhancement based on multi-scale adversarial network[J]. Computer Era, 2023(4): 5-10. [17] WANG X, FAN X, SHI P, et al. An overview of key SLAM technologies for underwater scenes[J]. Remote Sensing, 2023, 15(10): 2496. [18] VUK?I? M, JOSIPOVI? S, ?ORI? A, et al. Underwater ROV as inspection and development platform[J]. Transactions on Maritime Science, 2017, 6(1): 48-54. [19] OKEREKE C E, MOHAMAD M M, WAHAB N H A, et al. An overview of machine learning techniques in local path planning for autonomous underwater vehicles[J]. IEEE Access, 2023, 11: 24894-24907. [20] MANDAL R, CONNOLLY M R, THOMAS A, et al. Assessing fish abundance from underwater video using deep neural networks[C]//Proceedings of the 2018 International Joint Conference on Neural Networks, 2018: 1-6. [21] SUNG M, YU S C, GIRDHAR Y. Vision based real-time fish detection using convolutional neural network[C]//Proceedings of the OCEANS 2017, 2017: 1-6. [22] 黄珍伟, 陈伟, 王文杰, 等. 基于改进 RetinaNet 网络的水下机器人目标检测与实验[J]. 计算机工程与科学, 2024, 46(2): 264-271. HUANG Z W, CHEN W, WANG W J, et al. Underwater vehicle target detection and experiment based on improved RetinaNet network[J]. Computer Engineering and Science, 2024, 46(2): 264-271. [23] 韩冲, 苏涛, 谢基榕. 基于 OpenCV 的水下机器人单目定位技术研究与仿真[J]. 计算机测量与控制, 2017, 25(12): 219-223. HAN C, SU T, XIE J R. Research and simulation of underwater vehicle monocular positioning technology based on OpenCV[J]. Computer Measurement and Control, 2017, 25(12): 219-223. [24] ZHAO Z, LIU Y, SUN X, et al. Composited FishNet: fish detection and species recognition from low-quality underwater videos[J]. IEEE Transactions on Image Processing, 2021, 30: 4719-4734. [25] NEUPANE D, SEOK J. A review on deep learning-based approaches for automatic sonar target recognition[J]. Electronics, 2020, 9(11): 1972. [26] CAO X, REN L, SUN C. Research on obstacle detection and avoidance of autonomous underwater vehicle based on forward-looking sonar[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 9198-9208. [27] 汤寓麟, 王黎明, 余德荧, 等. 基于 CSLS-CycleGAN 的侧扫声纳水下目标图像样本扩增法[J]. 系统工程与电子技术, 2024, 46(5): 1514-1524. TANG Y L, WANG L M, YU D Y, et al. CSLS-CycleGAN based side-scan sonar sample augmentation method for underwater target image[J]. Journal of systems Engineering & Electronics, 2024, 46(5): 1514-1524. [28] WANG J, FENG C, WANG L, et al. Detection of weak and small targets in forward-looking sonar image using multi-branch shuttle neural network[J]. IEEE Sensors Journal, 2022, 22(7): 6772-6783. [29] QIN R, ZHAO X, ZHU W, et al. Multiple receptive field network (MRF-Net) for autonomous underwater vehicle fishing net detection using forward-looking sonar images[J]. Sensors, 2021, 21(6): 1933. [30] SZYMAK P, PISKUR P, NAUS K. The effectiveness of using a pretrained deep learning neural networks for object classification in underwater video[J]. Remote Sensing, 2020, 12(18): 3020. [31] BABAEIZADEH M, FROSIO I, TYREE S, et al. GA3C: GPU-based A3C for deep reinforcement learning[J]. arXiv:1611.06256, 2016. [32] FORTUNATO M, AZAR M G, PIOT B, et al. Noisy networks for exploration[J]. arXiv:1706.10295, 2017. [33] PRACZYK T. Neural collision avoidance system for biomimetic autonomous underwater vehicle[J]. Soft Computing, 2020, 24(2): 1315-1333. [34] ZHANG B, JI D, LIU S, et al. Autonomous underwater vehicle navigation: a review[J]. Ocean Engineering, 2023, 273: 113861. [35] PETILLOT Y, RUIZ I T, LANE D M. Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar[J]. IEEE Journal of Oceanic Engineering, 2001, 26(2): 240-251. [36] SAVKIN A V, VERMA S C, ANSTEE S. Optimal navigation of an unmanned surface vehicle and an autonomous underwater vehicle collaborating for reliable acoustic communication with collision avoidance[J]. Drones, 2022, 6(1): 27. [37] GE H L, DAI Y W, ZHU Z Y, et al. Improved YOLOv7 Acousto-optic fusion method for underwater target detection[J]. Ship Science and Technology, 2023, 45(12): 122-127. [38] GANESAN V, CHITRE M, BREKKE E. Robust underwater obstacle detection and collision avoidance[J]. Autonomous Robots, 2016, 40: 1165-1185. [39] ARAIN B, MCCOOL C, RIGBY P, et al. Improving underwater obstacle detection using semantic image segmentation[C]//Proceedings of the 2019 International Conference on Robotics and Automation , 2019: 9271-9277. [40] JIA R, LV B, CHEN J, et al. Underwater object detection in marine ranching based on improved YOLOv8[J]. Journal of Marine Science and Engineering, 2023, 12(1): 55. [41] ?MIERZCHALSKI R, KAPCZY?SKI M. Autonomous control of the underwater remotely operated vehicle in collision situation with stationary obstacle[J]. Polish Maritime Research, 2022, 29(4): 45-55. [42] FAYAZ S, PARAH S A, QURESHI G J, et al. Intelligent underwater object detection and image restoration for autonomous underwater vehicles[J]. IEEE Transactions on Vehicular Technology, 2023, 73(2): 1726-1735. [43] SUN M, ZHAO W, SONG G, et al. DDPG-based decision-making strategy of adaptive cruising for heavy vehicles considering stability[J]. IEEE Access, 2020, 8: 59225-59246. [44] 王大方. 基于深度强化学习的机器人导航研究[D]. 北京: 中国矿业大学, 2019. WANG D F. Research on robot navigation based on deep reinforcement learning[D]. Beijing: China University of Mining and Technology, 2019. [45] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518: 529-533. [46] RAY J P. Development of underwater robots for under water inspection and cleaning applications[D]. Lappeenranta: Lappeenranta University of Technology, 2023. [47] 董豪, 杨静, 李少波, 等. 基于深度强化学习的机器人运动控制研究进展[J]. 控制与决策, 2022, 37(2): 278-292. DONG H, YANG J, LI S B, et al. Research progress of robot motion control based on deep reinforcement learning[J]. Control and Decision, 2022, 37(2): 278-292. [48] GREFSTAD ?. Development of an obstacle detection and avoidance system for ROV[D]. South-Trondelag: Norges Teknisk-Naturvitenskapelige Universitet, 2018. [49] 石立伟, 鲍鹏筱, 陈占, 等. 水下球形机器人视觉防碰撞编队策略[J]. 兵工自动化, 2022, 41(10): 79-83. SHI L W, BAO P X, CHEN Z, et al. Visual anti-collision formation strategy for underwater spherical robots[J]. Ordnance Industry Automation, 2022, 41(10): 79-83. [50] SIV?EV S, ROSSI M, COLEMAN J, et al. Collision detection for underwater ROV manipulator systems[J]. Sensors, 2018, 18(4): 1117. [51] WEN C, HORIUCHI T K. The curved openspace algorithm and a spike-latency model for sonar-based obstacle avoidance[J]. Frontiers in Neurorobotics, 2022, 16: 850013. [52] 张俞鹏. 基于多波束前视声呐的水下障碍物检测及避障算法研究[D]. 上海: 上海大学, 2021. ZHANG Y P. Research on underwater obstacle detection and obstacle avoidance algorithm based on multi-beam forward looking sonar[D]. Shanghai: Shanghai University, 2021. [53] RUIZ I T, PETILLOT Y, LANE D, et al. Tracking objects in underwater multibeam sonar images[J]. IEE Colloquium on Motion Analysis and Tracking, 1999, 103: 1-7. [54] GREFSTAD ?, SCHJ?LBERG I. Navigation and collision avoidance of underwater vehicles using sonar data[C]//Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop, 2018: 1-6. [55] CYR R. Terrain obstacle avoidance sonar for autonomous vehicles[C]//Proceedings of the OCEANS’87, 1987: 134-138. [56] FEDOROVICH A J, KLAMO T J, KRAGELUND S P, et al. Head-on object size determination using a forward looking sonar for obstacle avoidance[C]//Proceedings of the OCEANS 2022, 2022: 1-8. [57] OCHOA E, GRACIAS N R, ISTENI? K, et al. Collision detection and avoidance for underwater vehicles using omnidirectional vision[J]. Sensors, 2022, 22(14): 5354. [58] LEI Y, TIAN T, JIANG B, et al. Research and application of the obstacle avoidance system for high-speed railway tunnel lining inspection train based on integrated 3D LiDAR and 2D camera machine vision technology[J]. Applied Sciences, 2023, 13(13): 7689. [59] ALHATTAB A Y, ABIDIN Z B Z, FAIZABADI A R, et al. Integration of stereo vision and MOOS-IvP for enhanced obstacle detection and navigation in unmanned surface vehicles[J]. IEEE Access, 2023, 11: 128932-128956. [60] YESIN K, NELSON B J, PAPANIKOLOPOULOS N P, et al. Active video system for a miniature reconnaissance robot[C]//Proceedings of the IEEE International Conference on Robotics and Automation, 2000: 3919-3924. [61] OCHOA E, GRACIAS N, ISTENI? K, et al. Allowing untrained scientists to safely pilot ROVs: early collision detection and avoidance using omnidirectional vision[C]//Proceedings of the Global Oceans 2020, 2020: 1-7. [62] MA J. Dynamic obstacle avoidance and trajectory planning of five-axis redundant industrial manipulator[J]. Journal of Vibroengineering, 2023, 25(4): 778-791. [63] PORTUGAL M, MARTA A C. Optimal multi-sensor obstacle detection system for small fixed-wing UAVs[J]. Modelling, 2023, 5(1): 16-36. [64] PUTRA A A G J, TRILAKSONO B R, HIDAYAT E M I. Hybrid autonomous underwater glider (HAUG) obstacle detection and avoidance[C]//Proceedings of the 2021 IEEE 11th International Conference on System Engineering and Technology, 2021: 118-123. [65] FANG M C, WANG S M, WANG M C, et al. Applying the self-tuning fuzzy control with the image detection technique on the obstacle-avoidance for autonomous underwater vehicles[J]. Ocean Engineering, 2015, 93: 11-24. [66] CHU Z, WANG F, LEI T, et al. Path planning based on deep reinforcement learning for autonomous underwater vehicles under ocean current disturbance[J]. IEEE Transactions on Intelligent Vehicles, 2022, 8(1): 108-120. [67] HADI B, KHOSRAVI A, SARHADI P. Deep reinforcement learning for adaptive path planning and control of an autonomous underwater vehicle[J]. Applied Ocean Research, 2022, 129: 103326. [68] GAO W, HAN M, WANG Z, et al. Research on method of collision avoidance planning for uuv based on deep reinforcement learning[J]. Journal of Marine Science and Engineering, 2023, 11(12): 2245. [69] CHENG C, SHA Q, HE B, et al. Path planning and obstacle avoidance for AUV: a review[J]. Ocean Engineering, 2021, 235: 109355. [70] YUAN J, WANG H, ZHANG H, et al. AUV obstacle avoidance planning based on deep reinforcement learning[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1166. [71] JIANG D, YUAN M, XIONG J, et al. Obstacle avoidance USV in multi-static obstacle environments based on a deep reinforcement learning approach[J]. Measurement and Control, 2024, 57(4): 415-427. [72] LI J, CHAVEZ-GALAVIZ J, AZIZZADENESHELI K, et al. Dynamic obstacle avoidance for usvs using cross-domain deep reinforcement learning and neural network model predictive controller[J]. Sensors, 2023, 23(7): 3572. [73] ZHAO G, YING F, PANG Z, et al. Robotic motion planning with obstacle avoidance based on hierarchical deep reinforcement learning[C]//Proceedings of the 2023 3rd International Conference on Robotics and Control Engineering, 2023: 108-112. [74] WANG P, LIU R, TIAN X, et al. Obstacle avoidance for environmentally-driven USVs based on deep reinforcement learning in large-scale uncertain environments[J]. Ocean Engineering, 2023, 270: 113670. [75] CHEN P, PEI J, LU W, et al. A deep reinforcement learning based method for real-time path planning and dynamic obstacle avoidance[J]. Neurocomputing, 2022, 497: 64-75. [76] KOT R. Review of collision avoidance and path planning algorithms used in autonomous underwater vehicles[J]. Electronics, 2022, 11(15): 2301. [77] 倪生科, 刘正江, 蔡垚, 等. 基于混合遗传算法的船舶避碰路径规划[J]. 上海海事大学学报, 2019, 40(1): 21-26. NI S K, LIU Z J, CAI Y, et al. Ship collision avoidance path planning based on hybrid genetic algorithm [J]. Journal of Shanghai Maritime University, 2019, 40(1): 21-26. [78] QIN H, SHAO S, WANG T, et al. Review of autonomous path planning algorithms for mobile robots[J]. Drones, 2023, 7(3): 211. [79] SGORBISSA A. Integrated robot planning, path following, and obstacle avoidance in two and three dimensions: wheeled robots, underwater vehicles, and multicopters[J]. The International Journal of Robotics Research, 2019, 38(7): 853-876. [80] LIN Y, SARIPALLI S. Sampling-based path planning for UAV collision avoidance[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11): 3179-3192. [81] RAFAI A N A, ADZHAR N, JAINI N I. A review on path planning and obstacle avoidance algorithms for autonomous mobile robots[J]. Journal of Robotics, 2022, 2022: 1-14. [82] SAHOO S P, DAS B, PATI B B, et al. Hybrid path planning using a bionic-inspired optimization algorithm for autonomous underwater vehicles[J]. Journal of Marine Science and Engineering, 2023, 11(4): 761. [83] KOT R. Review of obstacle detection systems for collision avoidance of autonomous underwater vehicles tested in a real environment[J]. Electronics, 2022, 11(21): 3615. [84] LV Q Y. Research and analysis of obstacle avoidance path planning for autonomous vehicles[C]//Proceedings of the 2021 International Conference on Signal Processing and Machine Learning, 2021: 225-228. [85] SUN B, ZHANG W, LI S, et al. Energy optimised D* AUV path planning with obstacle avoidance and ocean current environment[J]. The Journal of Navigation, 2022, 75(3): 685-703. [86] FU J, LV T, LI B. Underwater submarine path planning based on artificial potential field ant colony algorithm and velocity obstacle method[J]. Sensors, 2022, 22(10): 3652. [87] HAN G, QI X, PENG Y, et al. Early warning obstacle avoidance-enabled path planning for multi-AUV-based maritime transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(2): 2656-2667. [88] JIN H, JI H, YAN F. An effective obstacle avoidance and motion planning design for underwater telescopic arm robots based on a tent chaotic dung beetle algorithm[J]. Electronics, 2023, 12(19): 4128. [89] WANG C, YANG X, LI H. Improved Q-learning applied to dynamic obstacle avoidance and path planning[J]. IEEE Access, 2022, 10: 92879-92888. [90] XU H L, LUAN K, JIA B Q, et al. Cooperative obstacle avoidance method of multiple unmanned underwater vehicles based on improved artificial potential field method[C]//Proceedings of the 2023 35th Chinese Control and Decision Conference, 2023: 2950-2955. [91] ZHU L, XIE H, SONG Z. Robot obstacle avoidance path planning based on improved artificial potential field[C]//Proceedings of the 3rd International Conference on Control and Intelligent Robotics, 2023: 563-569. [92] YU H, NING L. Coordinated obstacle avoidance of multi-AUV based on improved artificial potential field method and consistency protocol[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1157. [93] YAN Z, ZHAO L, WANG Y, et al. Path planning of AUV for obstacle avoidance with improved artificial potential field[C]//Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, 2023: 1-5. [94] HAN H, XI Z, CHENG J, et al. Obstacle avoidance based on deep reinforcement learning and artificial potential field[C]//Proceedings of the 2023 9th International Conference on Control, Automation and Robotics, 2023: 215-220. [95] ZHANG W, XU G, SONG Y, et al. An obstacle avoidance strategy for complex obstacles based on artificial potential field method[J]. Journal of Field Robotics, 2023, 40(5): 1231-1244. [96] WANG S M, FANG M C, WANG C N. Vertical obstacle avoidance and navigation of autonomous underwater vehicles with H∞ controller and the artificial potential field method[J]. Journal of Navigation, 2019, 72(1): 207-228. [97] DEMIM F, ROUIGUEB A, BELAIDI H, et al. Smooth sliding mode control based technique of an autonomous underwater vehicle based localization using obstacle avoidance strategy[C]//Proceedings of the International Conference on Informatics in Control, Automation and Robotics, 2023: 529-537. [98] CHEN S, LIN T, JHENG K, et al. Application of fuzzy theory and optimum computing to the obstacle avoidance control of unmanned underwater vehicles[J]. Applied Sciences, 2020, 10(17): 6105. [99] MHDAWI A A K, WRIGHT N, BENSON S, et al. CART-Ⅱ: development of collision avoidance robotic tether with soft sensing capabilities for underwater nuclear inspection vehicles[C]//Proceedings of the 2023 9th International Conference on Automation, Robotics and Applications, 2023: 15-22. [100] DREWS P, HERNáNDEZ E, ELFES A, et al. Real-time monocular obstacle avoidance using underwater dark channel prior[C]//Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016: 4672-4677. [101] TENG B, ZHAO H. Underwater target recognition methods based on the framework of deep learning: a survey[J]. International Journal of Advanced Robotic Systems, 2020, 17(6): 1729881420976307. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||