[1] 孙宏鑫, 魏先华. 基于趋势学习的混合神经网络股指期货预测研究[J]. 计量经济学报, 2021, 1(4): 921-934.
SUN H X, WEI X H. Research on stock index futures forecast based on trend learning and hybrid neural network[J]. China Journal of Econometrics, 2021, 1(4): 921-934.
[2] HUANG W, NAKAMORI Y, WANG S Y. Forecasting stock market movement direction with support vector machine[J]. Computers & Operations Research, 2005, 32(10): 2513-2522.
[3] 胡雪梅, 蒋慧凤. 具有技术指标的逻辑回归模型预测谷歌股票的涨跌趋势[J]. 系统科学与数学, 2021, 41(3): 802-823.
HU X M, JIANG H F. Logistic regression model with technical indicators predicts ups and downs for google stock prices[J]. Journal of Systems Science and Mathematical, 2021, 41(3): 802-823.
[4] BASAK S, KAR S, SAHA S, et al. Predicting the direction of stock market prices using tree-based classifiers[J]. The North American Journal of Economics and Finance, 2019, 47: 552-567.
[5] YU L, WANG S, LAI K K, et al. A multiscale neural network learning paradigm for financial crisis forecasting[J]. Neurocomputing, 2010, 73(4/5/6): 716-725.
[6] 黄卿, 谢合亮. 机器学习方法在股指期货预测中的应用研究——基于BP神经网络、SVM和XGBoost的比较分析[J]. 数学的实践与认识, 2018, 48(8): 297-307.
HUANG Q, XIE H L. Research on the application of machine learning in stock index futures forecast-comparison and analysis based on BP neural networks, SVM and XGBoost[J]. Mathematics in Practice and Theory, 2018, 48(8): 297-307.
[7] BUCCI A. Realized volatility forecasting with neural networks[J]. Journal of Financial Econometrics, 2020, 18(3): 502-531.
[8] LI S, TIAN Z, LI Y. Residual long short-term memory network with multi-source and multi-frequency information fusion: an application to China’s stock market[J]. Information Sciences, 2023, 622: 133-147.
[9] YAN W L. Stock index futures price prediction using feature selection and deep learning[J]. The North American Journal of Economics and Finance, 2023, 64: 101867.
[10] BARAK S, MIRAFZALI E, JOSHAGHANI M. Improving deep learning forecast using variational AutoEncoders[J]. arXiv:1906.01984, 2019.
[11] BOQUET G, MORELL A, SERRANO J, et al. A variational autoencoder solution for road traffic forecasting systems: missing data imputation, dimension reduction, model selection and anomaly detection[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102622.
[12] NARITOMI Y, ADACHI T. Data augmentation of high frequency financial data using generative adversarial network [C]//Proceedings of the 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, 2020: 641-648.
[13] CHEN W, SHI K. Multi-scale attention convolutional neural network for time series classification[J]. Neural Networks, 2021, 136: 126-140.
[14] GUNDUZ H. An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination[J]. Financial Innovation, 2021, 7(1): 28.
[15] 邓德军, 徐洪珍, 韦诗玥. E-V-ALSTM模型的股价预测[J]. 计算机工程与应用, 2023, 59(6): 101-112.
DENG D J, XU H Z, WEI S Y. Stock price prediction based on E-V-ALSTM model[J]. Computer Engineering and Applications, 2023, 59(6): 101-112.
[16] KINGMA D P, WELLING M. An introduction to variational autoencoders[J]. Foundations and Trends? in Machine Learning, 2019, 12(4): 307-392.
[17] KINGMA D P, WELLING M. Auto-encoding variational bayes[J]. arXiv:1312.6114, 2013.
[18] GUNDUZ H, YASLAN Y, CATALTEPE Z. Intraday prediction of Borsa Istanbul using convolutional neural networks and feature correlations[J]. Knowledge-Based Systems, 2017, 137(1): 138-148. |