[1] 于海姝, 蔡吉花, 夏红. ARIMA模型在股票价格预测中的应用[J]. 经济师, 2015(11): 156-157.
YU H S, CAI J H, XIA H. Application of ARIMA model in stock price forecasting[J]. China Economist, 2015(11): 156-157.
[2] LI B, ZHANG J, CHEN Q. Quantitative nondestructive testing of steel wire rope based on optimized support vector machine[J]. Russian Journal of Nondestructive Testing, 2021, 57(11): 1008-1017.
[3] GURESEN E, KAYAKUTLU G, DAIM T U. Using artificial neural network models in stock market index prediction[J]. Expert Systems with Applications, 2011, 38(8): 10389-10397.
[4] 隋金城. 遗传算法优化BP神经网络的股价预测研究[J]. 经济技术协作信息, 2020(7): 55.
SUI J C. Research on the prediction of stock prices using genetic algorithm optimized BP neural network [J]. Economic and Technical Cooperation Information, 2020(7): 55.
[5] 吕琦. 基于SVM的股票时间序列的预测研究[J]. 吉林工程技术师范学院学报, 2011(7): 48-49.
LYU Q. Research on stock time series forecasting based on SVM[J]. Journal of Jilin Engineering Normal University, 2011(7): 48-49.
[6] SAMARAWICKRAMA A J P, FERNANDO T G I. A recurrent neural network approach in predicting daily stock prices an application to the Sri Lankan stock market[C]//Proceedings of the 2017 IEEE International Conference on Industrial and Information Systems, 2017: 1-6.
[7] LIU Y, GUAN L, HOU C, et al. Wind power short-term prediction based on LSTM and discrete wavelet transform[J]. Applied Sciences, 2019, 9(6): 1108.
[8] KUMAR K, HAIDER M T U. Enhanced prediction of intra-day stock market using metaheuristic optimization on RNN-LSTM network[J]. New Generation Computing, 2021, 39(1): 231-272.
[9] 左川, 王宇, 李振. 深度学习在股票投资中的应用[J]. 郑州大学学报 (哲学社会科学版), 2022, 55(2): 56-62.
ZUO C, WANG Y, LI Z. Application of deep learning in stock investment[J]. Journal of Zhengzhou University (Philosophy and Social Sciences), 2022, 55(2): 56-62.
[10] 陈卫华, 徐国祥. 基于深度学习和股票论坛数据的股市波动率预测精度研究[J]. 管理世界, 2018, 34(1): 180-181.
CHEN W H, XU G X. Research on the prediction accuracy of stock market volatility based on deep learning and stock forum data [J]. Management World, 2018, 34(1): 180-181.
[11] 包志强, 赵研, 胡啸天, 等. 最小窥视孔长短时记忆模型[J]. 计算机工程与设计, 2020, 41(1): 134-138.
BAO Z Q, ZHAO Y, HU X T, et al. Minimal peephole long short-term memory model[J]. Computer Engineering and Design, 2020, 41(1): 134-138.
[12] 蔡鑫祥, 撖奥洋, 周生奇, 等. 基于改进Bagging算法与模糊MP-LSTM融合的短期负荷预测模型[J]. 电气工程学报, 2022, 17(1): 164-170.
CAI X X, YAN A Y, ZHOU S Q, et al. A short-term load forecasting model based on improved bagging algorithm and fuzzy MP-LSTM integration[J]. Journal of Electrical Engineering, 2022, 17(1): 164-170.
[13] 蔡鑫祥. 基于MP-RLSTM的电力系统短期负荷预测研究[D]. 青岛: 青岛大学, 2022.
CAI X X. Research on short-term load forecasting of power systems based on MP-RLSTM[D]. Qingdao: Qingdao University, 2022.
[14] HU J, ZHENG W D. Transformation-gated LSTM: efficient capture of short-term mutation dependencies for multivariate time series prediction tasks[C]//Proceedings of the 2019 International Joint Conference on Neural Networks, 2019: 1-8.
[15] 刘玉敏, 李洋, 赵哲耘. 基于特征选择的RF-LSTM模型成分股价格趋势预测[J]. 统计与决策, 2021, 37(1): 157-160.
LIU Y M, LI Y, ZHAO Z Y. Stock trend prediction of component stocks based on feature selection and RF-LSTM model[J]. Statistics and Decision, 2021, 37(1): 157-160.
[16] 李辉, 化金金, 邹波蓉. 基于RF-LSTM组合模型的股票价格预测[J]. 河南理工大学学报 (自然科学版), 2022, 41(1): 136-142.
LI H, HUA J J, ZOU B R. Stock price prediction based on the RF-LSTM combined model [J]. Journal of Henan Polytechnic University (Natural Science Edition), 2022, 41(1): 136-142.
[17] 邹婕, 李路. RF-SA-GRU模型的股价预测研究[J]. 计算机工程与应用, 2023, 59(15): 300-309.
ZOU J, LI L. Research on stock price prediction using the RF-SA-GRU model[J]. Computer Engineering and Applications, 2023, 59(15): 300-309.
[18] 方义秋, 卢壮, 葛君伟. 联合RMSE损失LSTM-CNN模型的股价预测[J]. 计算机工程与应用, 2022, 58(9): 294-302.
FANG Y Q, LU Z, GE J W. Stock price forecasting based on combined RMSE loss LSTM-CNN model[J]. Computer Engineering and Applications, 2022, 58(9): 294-302. |