[1] ABDUL-RAHMAN S, MUTALIB S. Mining textual terms for stock market prediction analysis using financial news[C]//Proceedings of International Conference on Soft Computing in Data Science. Singapore: Springer, 2017: 293-305.
[2] BINKOWSKI M, MARTI G, DONNAT P. Autoregressive convolutional neural networks for asynchronous time series[C]//Proceedings of International Conference on Machine Learning, 2018: 580-589.
[3] MEHTAB S, SEN J. Stock price prediction using convolutional neural networks on a multivariate timeseries[EB/OL]. (2020-01-10) [2023-06-20]. https://arxiv.org/abs/2001.09769.
[4] MEHTAB S, SEN J, DUTTA A. Stock price prediction using machine learning and LSTM-based deep learning models[C]//Proceedings of Symposium on Machine Learning and Metaheuristics Algorithms, and Applications. Singapore: Springer, 2020: 88-106.
[5] SEN J, DUTTA A, MEHTAB S. Profitability analysis in stock investment using an LSTM-based deep learning model[C]//Proceedings of the 2nd International Conference for Emerging Technology (INCET). Belagavi: IEEE, 2021: 1-9.
[6] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, Cambridge, 2014: 2672-2680.
[7] KONG J, KIM J, BAE J. Hifi-GAN: generative adversarial networks for efficient and high fidelity speech synthesis[C]//Advances in Neural Information Processing Systems, 2020: 17022-17033.
[8] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, 2017: 1125-1134.
[9] XIONG W, LUO W, MA L, et al. Learning to generate time-lapse videos using multi-stage dynamic generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 2364-2373.
[10] VONDRICK C, PIRSIAVASH H, TORRALBA A. Generating videos with scene dynamics[C]//Advances in Neural Information Processing Systems, 2016: 613-621.
[11] DENG S M, ZHANG N Y, ZHANG W, et al. Knowledge-driven stock trend prediction and explanation via temporal convolutional network[C]//Companion Proceedings of The 2019 World Wide Web Conference, San Francisco, 2019: 678-685.
[12] DUARTE J J, MONTENEGRO GONZáLEZ S, CRUZ J C. Predicting stock price falls using news data: evidence from the Brazilian market[J]. Computational Economics, 2021, 57(1): 311-340.
[13] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2020-01-16) [2023-06-21]. https://arxiv.org/abs/1301.3781.
[14] BAI S, KOLTER J Z, KOLTUN V. Trellis networks for sequence modeling[EB/OL]. (2018-09-27) [2023-06-20]. https://arxiv.org/abs/1810.06682.
[15] 吴玉霞, 温欣. 基于ARIMA模型的短期股票价格预测[J]. 统计与决策, 2016(23): 83-86.
WU Y X, WEN X. Short-term stock price prediction based on ARIMA model[J]. Statistics and Decision, 2016(23): 83-86.
[16] DADHICH M, PAHWA M S, JAIN V, et al. Predictive models for stock market index using stochastic time series ARIMA modeling in emerging economy[M]//Advances in mechanical engineering. Singapore: Springer, 2021: 281-290.
[17] ZHANG G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50: 159-175.
[18] CHEN K, ZHOU Y, DAI F Y. A LSTM-based method for stock returns prediction: a case study of China stock market [C]//Proceedings of IEEE International Conference on Big Data. CA: Santa Clara, 2015: 2823-2824.
[19] 邹婕, 李路. RF-SA-GRU模型的股价预测研究[J]. 计算机工程与应用, 2023, 59 (15): 300-309.
ZOU J, LI L. Stock price prediction research based on RF-SA-GRU model[J]. Computer Engineering and Applications, 2023, 59 (15): 300-309.
[20] FARAZ M, KHALOOZADEH H. Multi-step-ahead stock market prediction based on least squares generative adversarial network[C]//Proceedings of the 28th Iranian Conference on Electrical Engineering (ICEE). Tabriz: IEEE, 2020: 1-6.
[21] ZHOU X Y, PAN Z S, HU G Y. et al. Stock market prediction on high-frequency data using generative adversarial nets[J]. Mathematical Problems in Engineering, 2018: 4907423.
[22] GILBERT E, KARAHALIOS K. Widespread worry and the stock market[C]//Proceedings of the International AAAI Conference on Web and Social Media, 2010 : 58-65.
[23] CAROSIA A E D O, COELHO G P, SILVAA E A D. Investment strategies applied to the Brazilian stock market: a methodology based on sentiment analysis with deep learning[J]. Expert Systems with Applications, 2021, 184: 115470.
[24] 田红丽, 金硕, 闫会强. 一种基于TCN和新闻情感的股票预测方法[J]. 信息技术与信息化, 2021(6): 17-21.
TIAN H L, JIN S, YAN H Q. A stock prediction method based on TCN and news sentiment[J]. Information Technology & Informatization, 2021(6): 17-21.
[25] 刘玉玲, 赵国龙, 邹自然, 等. 基于情感分析和GAN的股票价格预测方法[J]. 湖南大学学报 (自然科学版), 2022, 49(10): 111-118.
LIU Y L, ZHAO G L, ZOU Z R, et al. Stock price prediction method based on sentiment analysis and generative adversarial network[J]. Journal of Hunan University (Natural Sciences), 2022, 49(10): 111-118.
[26] 林培光, 周佳倩, 温玉莲. SCONV: 一种基于情感分析的金融市场趋势预测方法[J]. 计算机研究与发展, 2020, 57(8): 1769-1778.
LIN P G, ZHOU J Q, WEN Y L. SCONV: a financial market trend forecast method based on emotional analysis[J]. Journal of Computer Research and Development, 2020, 57(8): 1769-1778. |