[1] ZHANG S, LI Y P. Retinal vascular image segmentation based on improved HED network[J]. Acta Optica Sinica, 2020, 40(6): 0610002.
[2] ASGSRI TAGHANAKI S, ABHISHEK K, COEN J P, et al. Deep semantic segmentation of natural and medical images: a review[J]. Artificial Intelligence Review, 2021, 54(1): 137-178.
[3] YUAN X, SHI J, GU L. A review of deep learning methods for semantic segmentation of remote sensing imagery[J]. Expert Systems with Applications, 2021, 169: 114417.
[4] 王奕清. 基于计算机视觉的卫星云图反演降水量方法研究[D]. 成都: 电子科技大学, 2021.
WANG Y Q. A computer vision method for precipitation inversion with satellite cloud images[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[5] IVANOVS M, OZOLS K, DOBRAJS A, et al. Improving semantic segmentation of urban scenes for self-driving cars with synthetic images[J]. Sensors, 2022, 22(6): 2252.
[6] KONTSCHIEDER P, BULO S R, BISCHOF H, et al. Structured class-labels in random forests for semantic image labelling[C]//Proceedings of the 2011 International Conference on Computer Vision, 2011: 2190-2197.
[7] VAN HEUVEL D M, MANDL R, HULSHOFF P H. Normalized cut group clustering of resting-state FMRI data[J]. PLoS One, 2008, 3(4): e2001.
[8] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 3431-3440.
[9] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[10] CHEN L C, PAOANDREOU, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv:1412.7062, 2014.
[11] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[12] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[13] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 801-818.
[14] HOWAR A G,ZHU M,CHEN B,et al. MoblieNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[15] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[16] HOU Q B, ZHANG L, CHENG M M, et al. Strip pooling: rethinking spatial pooling for scene parsing[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4003-4012.
[17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, 2018: 3-19.
[18] ZHANG Z L, SABUNCU M. Generalized cross entropy loss for training deep neural networks with noisy labels[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, 2018: 8792-8802.
[19] RONNEBERGER O, FISCHER P B R. U-Net: convolutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2015: 234-241.
[20] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890.
[21] SUN K, ZHAO Y, JIANG B R, et al. High-resolution representations for labeling pixels and regions[J]. arXiv:1904. 04514, 2019. |