Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (16): 258-268.DOI: 10.3778/j.issn.1002-8331.2311-0378

• Graphics and Image Processing • Previous Articles     Next Articles

Improved Efficient Real-Time Instance Segmentation Model Based on YOLOv5s-Seg

MA Dongmei, GUO Zhihao, LUO Xiaoyun   

  1. 1.School of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070,China
    2.Gansu Intelligent Information Technology and Application Engineering Research Center, Lanzhou 730070,China
  • Online:2024-08-15 Published:2024-08-15

改进YOLOv5s-Seg的高效实时实例分割模型

马冬梅,郭智浩,罗晓芸   

  1. 1.西北师范大学 物理与电子工程学院,兰州 730070
    2.甘肃省智能信息技术与应用工程研究中心,兰州 730070

Abstract: Instance segmentation is a crucial component of image segmentation and an important topic in the field of computer vision. However, existing instance segmentation models cannot guarantee segmentation accuracy while maintaining real-time performance. Consequently, the issues of low accuracy and inaccurate positioning persist in real-time instance segmentation tasks. To address the issues, this paper proposes an improved real-time instance segmentation model based on YOLOv5s-Seg. Initially, YOLOv5s-Seg serves as the fundamental model for the network, the Repvit m3 network is chosen as the backbone. Subsequently, this paper refines the FPN structure by upgrading the original C3 convolution module to the RsRepVitBlock module within the FPN structure and incorporating the ECA attention mechanism internally. Finally, this paper adopts SIoU as the bounding box loss function for the model. Experimental results on the public dataset PASCAL VOC 2012 demonstrate that the improved model achieves a segmentation accuracy of 65.7% mAP, representing a significant improvement of 10.6?percentage points compared to the original YOLOv5s-Seg model. This model significantly enhances segmentation accuracy and effectively addresses the problem of inaccurate positioning in segmentation tasks. Compared to other models, it exhibits notable accuracy advantages and superior model stability.

Key words: real-time instance segmentation, YOLOv5s-Seg, Repvit m3, RsRepVitBlock, efficient channel attention (ECA), SIoU

摘要: 实例分割是图像分割的重要组成部分,同时也是计算机视觉领域的一个重要课题。然而现有实例分割模型不能在保证实时性的同时保证模型分割精度,因此在实时实例分割任务中一直存在精度过低、定位不精确的问题。针对此问题,提出了一种基于YOLOv5s-Seg改进的实时实例分割模型。以YOLOv5s-Seg作为网络的基础模型,主干网络选用Repvit m3网络,然后改进FPN结构,在FPN结构中将原始得到的C3卷积模块升级为RsRepVitBlock模块,并在其内部使用ECA注意力机制,最后采用SIoU作为模型的边界框损失函数。该算法在公开数据集PASCAL VOC 2012上的实验结果显示,改进后的模型分割精度mAP达到了65.7%,较原模型YOLOv5s-Seg提高了10.6个百分点。该模型大幅提升了分割精度,并且有效地改善了分割任务中定位不准确的问题。相较于其他模型,具有显著的精度优势和更好的模型稳定性。

关键词: 实时实例分割, YOLOv5s-Seg, Repvit m3, RsRepVitBlock, 高效通道注意力机制(ECA), SIoU