[1] 丁石川, 厉雪衣, 杭俊, 等. 深度学习理论及其在电机故障诊断中的研究现状与展望[J]. 电力系统保护与控制, 2020, 48(8): 172-187.
DING S C, LI X Y, HANG J, et al. Deep learning theory and its application to fault diagnosis of an electric machine[J]. Power System Protection and Control, 2020, 48(8): 172-187.
[2] 张雅晖, 杨凯, 李天乐. 一种利用融合相关谱的异步电机故障诊断方法[J]. 电机与控制学报, 2021, 25(11): 1-7.
ZHANG Y H, YANG K, LI T L. Fault diagnosis method of asynchronous motors using fusion correlation spectrum[J]. Electric Machines and Control, 2021, 25(11): 1-7.
[3] 孙文珺. 基于深度学习模型的感应电机故障诊断方法研究[D]. 南京: 东南大学, 2017.
SUN W J. Induction motor fault diagnosis based on deep learning models[D]. Nanjing: Southeast University, 2017.
[4] 肖雄, 肖宇雄, 张勇军, 等. 基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究[J]. 中国电机工程学报, 2021, 41(2): 738-749.
XIAO X, XIAO Y X, ZHANG Y J, et al. Research on the application of the data augmentation method based on 2D gray pixel images in the fault diagnosis of motor bearing[J]. Proceedings of the CSEE, 2021, 41(2): 738-749.
[5] 雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56.
LEI Y G, JIA F, ZHOU X, et al. A deep learning-based method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering, 2015, 51(21): 49-56.
[6] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[7] 肖扬, 周军. 图像边缘检测综述[J]. 计算机工程与应用, 2023, 59(5): 40-54.
XIAO Y, ZHOU J. Overview of image edge detection[J]. Computer Engineering and Applications, 2023, 59(5): 40-54.
[8] 淦亚婷, 安建业, 徐雪. 基于深度学习的短文本分类方法研究综述[J]. 计算机工程与应用, 2023, 59(4): 43-53.
GAN Y T, AN J Y, XU X. Survey of short text classification methods based on deep learning[J]. Computer Engineering and Applications, 2023, 59(4): 43-53.
[9] 杨锋, 丁之桐, 邢蒙蒙, 等. 深度学习的目标检测算法改进综述[J]. 计算机工程与应用, 2023, 59(11): 1-15.
YANG F, DING Z T, XING M M, et al. Review of object detection algorithm improvement in deep learning[J]. Computer Engineering and Applications, 2023, 59(11): 1-15.
[10] 孙洁娣, 毛新茹, 温江涛, 等. 深度卷积长短期记忆网络的轴承故障诊断[J]. 机械科学与技术, 2021, 40(7): 1091- 1099.
SUN J D, MAO X R, WEN J T, et al. Bearing fault diagnosis using deep CNN and LSTM[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1091-1099.
[11] HUSARI F, SESHADRINATH J. Sensitive inter-tum fault identifcation in induction motors using deep learning based methods[C]//Proceedings of the 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy, 2020: 1-6.
[12] KUMAR P, HATI A S. Transfer learning-based deep CNN model for multiple faults detection in SCIM[J]. Neural Computing and Applications, 2021, 33(22): 15851-15862.
[13] JIAN X, LI W, GUO X, et al. Fault diagnosis of motor bearings based on a one-dimensional fusion neural network[J]. Sensors, 2019, 19(1): 122.
[14] ZHANG H, GE B, HAN B. Real-time motor fault diagnosis based on TCN and attention[J]. Machines, 2022, 10(4): 249.
[15] 邵思羽. 基于深度学习的旋转机械故障诊断方法研究[D]. 南京: 东南大学, 2019.
SHAO S Y. Methodologies for fault diagnosis of rotary machine based on deep learning[D]. Nanjing: Southeast University, 2019.
[16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[17] KIRANYAZ S, AVCI O, ABDELJABER O, et al. 1D convolutional neural networks and applications: a survey[J]. Mechanical Systems and Signal Processing, 2021, 151: 107398.
[18] 王跃龙. 笼型异步电动机多故障智能诊断及分离方法的研究[D]. 太原: 太原理工大学, 2017.
WANG Y L. Research on the multi-fault intelligent diagnosis and separation methods for squirrel cage asynchronous motor[D]. Taiyuan: Taiyuan University of Technology, 2017.
[19] MISRA S, KUMAR S, SAYYAD S, et al. Fault detection in induction motor using time domain and spectral imaging-based transfer learning approach on vibration data[J]. Sensors, 2022, 22(21): 8210.
[20] GUNDEWAR S, KANE P, ANDHARE A. Detection of broken rotor bar fault in an induction motor using convolution neural network[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2022, 16(2): 249025646.
[21] TAGHIYARRENANI Z, BERENJI A. An analysis of vibrations and currents for broken rotor bar detection in three-phase induction motors[C]//Proceedings of the PHM Society European Conference, 2022: 43-48.
[22] DİŞLİ F, GED?KPINAR M, SENGUR A. Deep transfer learning-based broken rotor fault diagnosis for induction motors[J]. Turkish Journal of Science and Technology, 2023, 18(1): 275-290.
[23] TREML A E, FLAUZINO R A, SUETAKE M, et al. Experimental database for detecting and diagnosing rotor broken bar in a three-phase induction motor[Z]. IEEE DataPort, 2020. |