[1] YANG W, ZHANG X, TIAN Y, et al. Deep learning for single image super-resolution: a brief review[J]. IEEE Transactions on Multimedia, 2019, 12(21): 3106-3121.
[2] YUE L, SHEN H, JIE L, et al. Image super-resolution: the techniques, applications, and future[J]. Signal Processing, 2016, 128: 389-408.
[3] ZOU W, YUEN P C. Very low resolution face recognition problem[J]. IEEE Transactions on Image Processing, 2012, 21(1): 327-340.
[4] HUNG K W, QIU C, JIANG J. Video super resolution via deep global-aware network[J]. IEEE Access, 2019, 7: 74711-74720.
[5] MASUTANI E M, NAEIM B, ALBERT H. Deep learning single-frame and multiframe super-resolution for cardiac MRI[J]. Radiology, 2020, 295(3): 552-561.
[6] SHUM H Y, LIN Z. Fundamental limits of reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 83-97.
[7] KEY R. Cubic convolution interpolation for digital Image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160.
[8] 陆志芳, 钟宝江. 基于预测梯度的图像插值算法[J]. 自动化学报, 2018, 44(6): 1072-1085.
LU Z F, ZHONG B J. Image interpolation with predicted gradients[J]. Acta Automatica Sinica, 2018, 44(6): 1072-1085.
[9] PURKAIT P, CHANDA B. Super resolution image reconstruction through bregman iteration using morphologic regularization[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4039-4209.
[10] SHI F, CHENG J, WANG L, et al. LRTV: MR image super-resolution with low-rank and total variation regularizations[J]. IEEE Transactions on Medical Imaging, 2015, 34(12): 2459-2466.
[11] RAHIMAN V A, GEORGE S N. Single image super resolution using neighbor embedding and statistical prediction model[J]. Computers & Electrical Engineering, 2017: 281-292.
[12] LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5835-5843.
[13] YANG X, ZHANG Y, ZHOU D, et al. An improved iterative back projection algorithm based on ringing artifacts suppression[J]. Neurocomputing, 2015: 171-179.
[14] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
[15] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 1637-1645.
[16] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016: 770-778.
[17] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern, 2017: 1132-1140.
[18] PHAM C, TOR-DíEZ C, MEUNIER H, et al. Multiscale brain MRI super-resolution using deep 3D convolutional networks[J]. Computerized Medical Imaging and Graphics, 2019, 77: 101647.
[19] DU J, WANG L, LIU Y, et al. Brain MRI super-resolution using 3D dilated convolutional encoder-decoder network[J]. IEEE Access, 2020, 8: 18938-18950.
[20] XIA Y, RAVIKUMAR N, GREENWOOD J P, et al. Super-resolution of cardiac MR cine imaging using conditional GANs and unsupervised transfer learning[J]. Medical Image Analysis, 2021, 71: 102037.
[21] TAI Y, YANG J, LIU X M. Image super-resolution via deep recursive residual network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017: 3147-3155.
[22] LIN G, WU Q, QIU L, et al. Image super-resolution using a dilated convolutional neural network[J]. Neurocomputing, 2018, 275: 1219-1230.
[23] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[24] ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision, 2018: 286-301.
[25] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 3-19.
[26] 印珏泽, 周宁宁. 基于对偶回归和注意力机制的图像超分辨率重建网络[J]. 计算机系统应用, 2023, 32(2): 111-118.
YIN J Z, ZHOU N N. Image super-resolution reconstruction network based on dual regression and attention mechanism[J]. Computer Systems & Applications, 2023, 32(2): 111-118.
[27] ZHANG Z D, WANG X R, JUNG C. Dilated convolutions for single image super-resolution[J]. IEEE Transactions on Image Processing, 2018, 28(4): 1625-1635.
[28] FENG S, JIAN C, LI W, et al. MR image super-resolution with low-rank and total variation regularizations[J]. IEEE Transactions on Medical Imaging, 2015, 34(12): 2459-2466.
[29] 樊帆, 高媛, 秦品乐, 等. 基于并行通道-空间注意力机制的腹部MRI影像多尺度超分辨率重建[J]. 计算机应用, 2020, 40(12): 3624-3630.
FAN F, GAO Y, QIN P L, et al. Abdominal MRl image multi-scale super-resolution reconstruction based on parallel channel-spatial attention mechanism[J]. Journal of Computer Applications, 2020, 40(12): 3624-3630.
[30] WANG H, WU C D, CHI J N, et al. Image super-resolution using multi-granularity perception and pyramid attention networks[J]. Neurocomputing, 2021, 443: 247-261.
[31] ZHANG L, NIE J, WEI W, et al. Deep blind hyperspectral image super-resolution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020: 2388-2400.
[32] PHAM C, DUCOURNAU A, FABLET R, et al. Brain MRI super-resolution using deep 3D convolutional networks[C]//Proceedings of the IEEE International Symposium on Biomedical Imaging, Melbourne, 2017: 197-200.
[33] SHI W, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016: 1874-1883.
[34] LANDMAN B A, HUANG A J, GIFFORD A, et al. Multi-parametric neuroimaging reproducibility: a 3-T resource study[J]. Neuroimage, 2011, 54(4): 2854-2866.
[35] HANG Z, ORAZIO G, IURI F, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47-57.
[36] MANJóN J V, COUPé P, BUADES A, et al. Non-local MRI upsampling[J]. Medical Image Analysis, 2010, 14(6): 784-792.
[37] DU J, WANG L, GHOLIPOUR A, et al. Accelerated super-resolution MR image reconstruction via a 3D densely connected deep convolutional neural network[C]//Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, 2018: 349-355. |