[1] DUAN H, ZHAO Y, CHEN K, et al. Revisiting skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 2969-2978.
[2] LIU H, LIU T, ZHANG Z, et al. ARHPE: asymmetric relation-aware representation learning for head pose estimation in industrial human-computer interaction[J]. IEEE Transactions on Industrial Informatics, 2022, 18(10): 7107-7117.
[3] WEI W L, LIN J C, LIU T L, et al. Capturing humans in motion: temporal-attentive 3D human pose and shape estimation from monocular video[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 13211-13220.
[4] 孙琪翔, 张睿哲, 何宁, 等. 基于非局部高分辨率网络的人体姿态估计方法[J]. 计算机工程与应用, 2022, 58(13): 227-234.
SUN Q X, ZHANG R Z, HE N, et al. Human pose estimation method based on non-local high-resolution networks[J]. Computer Engineering and Applications, 2022, 58(13): 227-234.
[5] CHEN Y, WANG Z, PENG Y, et al. Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7103-7112.
[6] XIAO B, WU H, WEI Y. Simple baselines for human pose estimation and tracking[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 466-481.
[7] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5693-5703.
[8] YANG S, QUAN Z, NIE M, et al. Transpose: keypoint locali-
zation via transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 11802-11812.
[9] XU Y, ZHANG J, ZHANG Q, et al. ViTPose: simple vision Transformer baselines for human pose estimation[J]. arXiv:2204.12484, 2022.
[10] WANG J, SUN K, CHENG T, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(10): 3349-3364.
[11] YU C, XIAO B, GAO C, et al. Lite-HRNet: a lightweight high-resolution network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10440-10450.
[12] LI Q, ZHANG Z, XIAO F, et al. Dite-HRNet: dynamic lightweight high-resolution network for human pose estimation[J]. arXiv:2204.10762, 2022.
[13] 邓辉, 徐杨. 融入注意力和密集连接的轻量型人体姿态估计[J]. 计算机工程与应用, 2022, 58(16): 265-273.
DENG H, XU Y. Lightweight human pose estimation based on attention and dense connection[J]. Computer Engineering and Applications, 2022, 58(16): 265-273.
[14] HUANG J, ZHU Z, GUO F, et al. The devil is in the details: delving into unbiased data processing for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5700-5709.
[15] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[16] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[17] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
[18] SHEN Z, ZHANG M, ZHAO H, et al. Efficient attention: attention with linear complexities[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 3531-3539.
[19] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[20] LIU H, LIU F, FAN X, et al. Polarized self-attention: towards high-quality pixel-wise regression[J]. arXiv:2107.00782, 2021.
[21] YU W, LUO M, ZHOU P, et al. MetaFormer is actually what you need for vision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 10819-10829. |