[1] 姜红丽, 刘羽茜, 冯一铭, 等. 碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J]. 发电技术, 2022, 43(1): 54-64.
JIANG H L, LIU Y X, FENG Y M, et al. Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutral[J]. Power Generation Technology, 2022, 43(1): 54-64.
[2] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
LI H, LIU D, YAO D Y. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[3] 李世民, 喜文华. 光伏组件热斑对发电性能的影响[J]. 发电设备, 2013, 27(1): 61-63.
LI S M, XI W H. Influence of hot sopt on power generaation performance of photovoltaic module[J]. Power Equipment, 2013, 27(1): 61-63.
[4] AZIZ F, UL HAQ A, AHMAD S, et al. A novel convolutional neural network-based approach for fault classification in photovoltaic arrays[J]. IEEE Access, 2020, 8: 41889-41904.
[5] 张文军. 基于深度学习的光伏发电系统运行状态监测与诊断研究[D]. 北京: 华北电力大学, 2021.
ZHANG W J. Research on operation condition monitoring and diagnosis of photovoltaic system based on deep learning[D]. Beijing: North China Electric Power University, 2021.
[6] 车曦. 基于红外图像识别的光伏组件热斑故障检测方法研究[D]. 重庆: 重庆大学, 2015.
CHE X. Research on image processing based photovoltaic modules hotspot detection[D]. Chongqing: Chongqing University, 2015.
[7] PIERDICCA R, MALINVERNI E S, PICCININI F, et al. Deep convolutional neural network for automatic detection of damaged photovoltaic cells[J]. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2018, 42(2): 893-900.
[8] 王奇, 任一峰, 王璐. 小型光伏热斑的全卷积网络模型检测[J]. 测试技术学报, 2022, 36(3): 199-205.
WANG Q, REN Y F, WANG L. Full convolutional network model detection for small photovoltaic hot spots[J]. Journal of Test and Measurement Technology, 2022, 36(3): 199-205.
[9] 郭梦浩, 徐红伟. 基于Faster RCNN的红外热图像热斑缺陷检测研究[J]. 计算机系统应用, 2019, 28(11): 265-270.
GUO M H, XU H W. Hot spot defect detection based on infrared thermal image and Faster RCNN[J]. Computer Systems & Applications, 2019, 28(11): 265-270.
[10] 贾帅康. 基于残差注意力机制的光伏组件热斑图像检测方法研究[D]. 北京: 华北电力大学, 2021.
JIA S K. Research on hot spot image detection method of photovoltaic module based on residual attention mechanism[D]. Beijing: North China Electric Power University, 2021.
[11] DI TOMMASO A, BETTI A, FONTANELLI G, et al. A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle[J]. Renewable Energy, 2022, 193: 941-962.
[12] ZEFRI Y, SEBARI I, HAJJI H, et al. Developing a deep learning-based layer-3 solution for thermal infrared large-scale photovoltaic module inspection from orthorectified big UAV imagery data[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 106: 102652.
[13] 刘川. 基于工程环境背景下安全帽佩戴检测算法研究[J]. 河南科技, 2022, 41(4): 7-12.
LIU C. Research on the algorithm of safety helmet wearing detection based on the background of engineering environment[J]. Henan Science and Technology, 2022, 41(4): 7-12.
[14] 陈子文, 李卓璐, 杨志鹏, 等. 基于YOLOv5的工厂化养殖虾目标检测方法研究[J]. 海洋渔业, 2022, 44(5): 610-620.
CHEN Z W, LI Z L, YANG Z P, et al. Research on YOLOv5-based object detection method for factory farmed shrimp[J]. Marine Fisheries, 2022, 44(5): 610-620.
[15] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 779-788.
[16] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[17] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[18] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//13th European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, September 6-12, 2014: 740-755.
[19] ARTHUR D, VASSILVITSKII S. k-means++: the advantages of careful seeding[C]//Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007: 1027-1035.
[20] 傅荟瑾, 史天运, 王瑞, 等. 基于改进YOLOv5的高铁周界入侵人员检测方法研究[J]. 铁道标准设计, 2023, 67(9): 162-169.
FU H J, SHI T Y, WANG R, et al. Research on intrusion detection of high speed railway perimeter based on improved YOLOv5[J]. Railway Standard Design, 2023, 67(9): 162-169.
[21] 李登峰, 高明. 基于改进YOLOv5的海面目标检测算法[J]. 激光杂志, 2023, 44(5): 47-52.
LI D F, GAO M. Sea surface target detection algorithm based on improved YOLOv5[J]. Laser Journal, 2023, 44(5): 47-52.
[22] 高新波, 莫梦竟成, 汪海涛, 等. 小目标检测研究进展[J]. 数据采集与处理, 2021, 36(3): 391-417.
GAO X B, MO M J C, WANG H T, et al. Recent advances in small object detection[J]. Journal of Data Acquisition and Processing, 2021, 36(3): 391-417.
[23] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[24] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[25] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[26] 赵辉, 李志伟, 张天琪. 基于注意力机制的单发多框检测器算法[J]. 电子与信息学报, 2021, 43(7): 2096-2104.
ZHAO H, LI Z W, ZHANG T Q. Attention based single shot multibox detector[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2096-2104.
[27] 王一旭, 肖小玲, 王鹏飞, 等. 改进YOLOv5s的小目标烟雾火焰检测算法[J]. 计算机工程与应用, 2023, 59(1): 72-81.
WANG Y X, XIAO X L, WANG P F, et al. Improved YOLOv5s small target smoke and fire detection algorithm[J]. Computer Engineering and Applications, 2023, 59(1): 72-81.
[28] 胡均平, 王鸿树, 戴小标, 等. 改进YOLOv5的小目标交通标志实时检测算法[J]. 计算机工程与应用, 2023, 59(2): 185-193.
HU J P, WANG H S, DAI X B, et al. Real-time detection algorithm for small-target traffic signs based on improved YOLOv5[J]. Computer Engineering and Applications, 2023, 59(2): 185-193.
[29] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[30] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016: 21-37. |