Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (7): 64-79.DOI: 10.3778/j.issn.1002-8331.2205-0409
• Research Hotspots and Reviews • Previous Articles Next Articles
QIU Yunfei, XING Haoran, LI Gang
Online:
2023-04-01
Published:
2023-04-01
邱云飞,邢浩然,李刚
QIU Yunfei, XING Haoran, LI Gang. Summary of Research on Construction of Knowledge Graph for Mine Construction[J]. Computer Engineering and Applications, 2023, 59(7): 64-79.
邱云飞, 邢浩然, 李刚. 矿井建设知识图谱构建研究综述[J]. 计算机工程与应用, 2023, 59(7): 64-79.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2205-0409
[1] 王萌,王昊奋,李博涵,等.新一代知识图谱关键技术综述[J].计算机研究与发展,2022,59(9):1947-1965. WANG M,WANG H F,LI B H,et al.Survey on key technologies of new generation knowledge graph[J].Journal of Computer Research and Development,2022,59(9):1947-1965. [2] GE Y,MA T,PEI T,et al.Progress of big geodata[J].Science Bulletin,2022,67(17):1743-1744. [3] 黄中伟,李国富,杨睿月.我国煤层气开发技术现状与发展趋势[J].煤炭学报,2022,47(9):3212-3238. HUANG Z W,LI G F,YANG R Y.Review and development trends of coalbed methane exploitation technology in China[J].Journal of China Coal Society,2022,47(9):3212-3238. [4] 陈仁朋,邹聂,吴怀娜,等.盾构掘进地表沉降机器学习预测与控制研究综述[J].华中科技大学学报(自然科学版),2022,50(8):56-65. CHEN R P,ZOU N,WU H N,et al.Review of prediction and control for surface settlement caused by shield tunneling based on machine learning[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2022,50(8):56-65. [5] 鄂海红,张文静,肖思琪,等.深度学习实体关系抽取研究综述[J].软件学报,2019,30(6):1793-1818. E H H,ZHANG W J,XIAO S Q,et al.Survey of entity relationship extraction based on deep learning[J].Journal of Software,2019,30(6):1793-1818. [6] 姚萍,李坤伟,张一帆.知识图谱构建技术综述[J].信息系统工程,2020(5):121-123. YAO P,LI K W,ZHANG Y F.Summary of research and application of knowledge graphs in riskmanagement field of commercial banks[J].Information System Engineering,2020(5):121-123. [7] 袁俊,刘国柱,梁宏涛,等.知识图谱在商业银行风控领域的研究与应用综述[J].计算机工程与应用,2022,58(19):37-52. YUAN J,LIU G Z,LIANG H T,et al.Summary of research and application of knowledge graghs in risk management field of commercial banks[J].Computer Engineering and Applications,2022,58(19):37-52. [8] PUJARA J,MIAO H,GETOOR L,et al.Ontology-aware partitioning forknowledge graph identification[J].Automated Knowledge Base Construction,2013,4(1):26-27. [9] BAO M,CAFARELLA M J,SODERLAND S,et al.Open information extraction from the Web[C]//Proceedings of the 20th International Joint Conference on Artifical Intelli-gence,2007:2670-2676. [10] 熊中敏,马海宇,李帅,等.知识图谱在海洋领域的应用及前景分析综述[J].计算机工程与应用,2022,58(3):15-33. XIONG Z M,MA H Y,LI S,et al.Summary of application and prospect analysis of knowledge graphs in marine field[J].Computer Engineering and Applications,2022,58(3):15-33. [11] 林明.基于知识图谱的交互关系浏览与分析:可视化模型与系统实现[D].杭州:浙江大学,2017:10-25. LIN M.Browsing and analysis of interactive relationship based on knowledge graph:visual model and system imple-mentation[D].Hangzhou:Zhejiang University,2017:10-25. [12] XU B,LIANG J,XIE C,et al.CN-DBpedia2:an extraction and verification framework for enriching Chinese encyclopedia knowledge base[J].Data Intelligence,2019,1(3):12. [13] NIU X,SUN X,WANG H,et al.Zhishi.me-weaving Chinese linking open data[C]//Proceedings of International Conference on the Semantic Web,2011. [14] BIZER C,LEHMANN J,KOBILAROV G,et al.Dbpedia—a crystallization point for the web of data[J].Web Semantics:Science,Services and Agents on the World Wide Web,2009,7(3):154-165. [15] VRANDE?I? D,KR?TZSCH M.Wikidata:a free collaborative knowledge base[J].Communications of the ACM,2014,57(10):78-85. [16] MILLER G A.Wordnet:a lexical database for English[J].Communications of the ACM,1995,38(11):39-41. [17] BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:a collaborative lycreated graph database for structuring human knowledge[C]//Proceedings of 2008 ACM SIGMOD International Conference on Management of Data,2008:1247-1250. [18] SUCHANEK F M,KASNECI G,WEIKUM G.Yago:alarge ontology from wikipedia and wordnet[J].Web Semantics:Science,Services and Agents on the World Wide Web,2008,6(3):42-43. [19] 邓凯,杨频,李益洲,等.一种可快速迁移的领域知识图谱构建方法[J].计算机科学,2022,49(S1):100-108. DENG K,YANG P,LI Y Z,et al.Fast and transmissible domain knowledge graph construction method[J].Computer Science,2022,49(S1):100-108. [20] 石刚.一种基于知识图谱的用户搜索意图挖掘方法的研究[D].北京:国际关系学院,2016:10-12. SHI G.Research on a method of mining user’s search intent based on knowledge graph[D].Beijing:School of International Relations,2016:10-12. [21] 侯梦薇,卫荣,陆亮,等.知识图谱研究综述及其在医疗领域的应用[J].计算机研究与发展,2018,55(12):2587-2599. HOU M W,WEI R,LU L,et al.Research review of knowledge graph and its application in medical domain[J].Journal of Computer Research and Development,2018,55(12):2587-2599. [22] ISOZAKI H.Efficient support vector classifiers for named entity recognition[C]//Proceedings of the 19th International Conference on Computational Linguistics,2002:1-7. [23] ALTUN Y,TSOCHANTARIDIS I,HOFMANN T.Hidden markov support vector machines[C]//Proceedings of the 20th International Conference on Machine Learning(ICML-3),2003:3-10. [24] SONG S,ZHANG N,HUANG H.Named entity recogni-tion based on conditional random fields[J].Cluster Computing,2017(1):1-12. [25] 冯夏庭,赵洪波.岩爆预测的支持向量机[J].东北大学学报,2002(1):57-59. FENG X T,ZHAO H B.Prediction of rockburst using support vector machine[J].Journal of Northeastern University,2002(1):57-59. [26] 向杰,陈建平,肖克炎,等.基于机器学习的三维矿产定量预测——以四川拉拉铜矿为例[J].地质通报,2019,38(12):2010-2021. XIANG J,CHEN J P,XIAO K Y,et al.3D metallogenic prediction based on machine learning:a case study of theLala copper deposit in Sichuan Province[J].Geological Bulletin of China,2019,38(12):2010-2021. [27] SOBHANA N V,GHOSH S K,MITRA P.Entity relation extraction from geological text using conditional random fields and subsequence kernels[C]//Proceedings of 2012 Annual IEEE India Conference,2012:832-840. [28] HU Z,HU X,QI L,et al.An information extraction method for sedimentology literature with semantic rules[C]//Proceedings of 2021 IEEE International Conference on Dependable,Autonomic and Secure Computing,Interna-tional Conference on Pervasive Intelligence and Computing,International Conference on Cloud and Big Data Computing,International Conference Cyber Science and Technology Congress,2021:475-481. [29] 李舟军,范宇,吴贤杰.面向自然语言处理的预训练技术研究综述[J].计算机科学,2020,47(3):162-173. LI Z J,FAN Y,WU Y J.Survey of natural language pro-cessing pre-training techniques[J].Computer Science,2020,47(3):162-173. [30] LAMPLE G,BALLESTEROS M,SUBRAMANIAN S,et al.Neuralarchitectures for named entity recognition[C]//Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics,2016:260-270. [31] 廖振鑫.面向地质领域的知识图谱构建研究及应用[D].成都:电子科技大学,2021. LIAO Z X.The construction and application of knowledge graph for geology[D].Chengdu:University of Electronic Science and Technology,2021. [32] QIU Q,XIE Z,WU L,et al.BiLSTM-CRF for geological named entity recognition from the geoscience literature[J].Earth Science Informatics,2019,12(4):565-579. [33] 谢雪景,谢忠,马凯,等.结合BERT与BiGRU-Attention CRF模型的地质命名实体识别[J/OL].地质通报:1-13(2021-09-13)[2022-03-31].https://kns.cnki.net/kcms/detail/11.4648.p.20210913.1040.002.html. XIE X J,XIE Z,MA K,et al.Geological named entity recognition based on BERT and BiGRU-attention CRF model[J/OL].Geological Bulletin of China:1-13(2021-09-13)[2022-03-31].https://kns.cnki.net/kcms/detail/11.4648.p.20210913.1040.002.html. [34] LI X,FENG J,MENG Y,et al.A unified MRC framework for named entity recognition[J].arXiv:1910.11476,2019. [35] XUE M,YU B,ZHANG Z,et al.Coarse-to-fine pretraining for named entity recognition[J].arXiv:2010.08210,2020. [36] HEARST M A.Automatic acquisition of hyponyms from large text corpora[C]//Proceedings of the 15th International Conference on Computational Linguistics,1992:539-545. [37] 张悦.矿物领域知识图谱构建技术研究与实现[D].北京:中国地质大学,2021. ZHANG Y.Research and implementation of mineral knowledge graph construction technology[D].Beijing:China University of Geosciences,2021. [38] DUDA R O,HART P E,NILSSON N J,et al.Semantic network representations in rule-based inference systems[M]//Pattern-directed inference systems.[S.l.]:Academic Press,1978:203-221. [39] ZHENG S,WANG F,BAO H,et al.Joint extraction of entities and relations based on anovel tagging scheme[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,2017:1227-1236. [40] ZENG D,LIU K,LAI S,et al.Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics,2014:2335-2344. [41] 张士红.基于深度学习的四川会理“拉拉式”铜矿找矿预测研究[D].北京:中国地质大学,2020. ZHANG S H.Deep learning for mineral prospectivity mapping of LALA-type copper deposit in the huili region,sichuan[D].Beijing:China University of Geosciences,2020. [42] LIN Y,SHEN S,LIU Z,et al.Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,2016:2124-2133. [43] 许浩亮,李雁群,何云琪,等.中文嵌套命名实体关系抽取研究[J].北京大学学报(自然科学版),2019,55(1):8-14. XU H L,LI Y Q,HE Y Q,et al.Research on Chinese nested named entity relation extraction[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(1):8-14. [44] 汪陈.面向中文文献的金矿时空属性信息抽取及知识图谱可视化表达[D].合肥:合肥工业大学,2021. WANG C.Extraction of spatiotemporal attributes information of gold mines and visual expression of knowledge graphs for Chinese literature[D].Hefei:Hefei University of Technology,2021. [45] 朱小龙.地质文本中油气藏特征提取及成藏知识图谱构建研究[D].北京:中国地质大学,2021. ZHU X L.Research on reservoir characteristics extraction and knowledge graph construction from geological document[D].Beijing:China University of Geosciences,2021. [46] 谢益辉,朱钰.Bootstrap方法的历史发展和前沿研究[J].统计与信息论坛,2008(2):90-96. XIE Y H,ZHU Y.Bootstrap methods:developments and frontiers[J].Journal of Statistics and Information,2008(2):90-96. [47] BRIN S.Extracting patterns and relations from the world wide web[J].Lecture Notes in Computer Science,1998,1590:172-183. [48] GLASS M,BARKER K.Bootstrapping relation extraction using parallel news articles[C]//Proceedings of the IJCAI Workshop on Learning by Reading and its Applications in Intelligent Question-Answering,2011. [49] MINTZ M,BILLS S,SNOW R,et al.Distant supervision for relation extraction without labeled data[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP,2009:1003-1011. [50] HUANG Y Y,WANG W Y.Deep residual learning for weakly-supervised relation extraction[J].arXiv:1707. 08866,2017. [51] 张少伟,王鑫,陈子睿,等.有监督实体关系联合抽取方法研究综述[J].计算机科学与探索,2022,16(4):713-733. ZHANG S W,WANG X,CHEN Z R,et al.Survey of super-vised joint entity relation extraction methods[J].Journal of Frontiers of Computer Science and Technology,2022,16(4):713-733. [52] AHN D.The stages of event extraction[C]//Proceedings of the Workshop on Annotating and Reasoning about Time and Events.Sydney,Australia:Association for Computational Linguistics,2006:1-8. [53] RIlOFF E.Automatically constructing a dictionary for information extraction tasks[C]//Proceedings of the 11th National Conference on Artificial Intelligence,1993:811-816. [54] 姜吉发.自由文本的信息抽取模式获取的研究[D].北京:中国科学院研究生院(计算技术研究所),2004. JIANG J F.A Research about the pattern acquisition for free text IE[D].Beijing:The Graduate School of the Chinese Academy of Sciences(Institute of Computational Technology),2004. [55] LIAO S,GRISHMAN R.Using document level crossevent inference to improve event extraction[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,2010. [56] 马春明,李秀红,李哲,等.事件抽取综述[J].计算机应用,2022(10):2975-2989. MA C M,LI X H,LI Z,et al.Survey of event extrac-tion[J].Journal of Computer Applications,2022(10):2975-2989. [57] CHIEU H L,NG H T.A maximum entropy approach to information extraction from semi-structured and free text[C]//Proceedings of the AAAI-02,2002:786-791. [58] LI S,YOU M J,LI D W,et al.Identifying coal mine safety production risk factors by employing text mining and Bayesian network techniques[J].Process Safety and Environmental Protection,2022,162:1067-1081. [59] CHEN Y,XU L,KANG L,et al.Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics,2015. [60] NGUYEN T H,CHO K,GRISHMAN R.Joint event extraction via recurrent neural networks[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2016. [61] 王侃,王孟洋,刘鑫,等.融合自注意力机制与CNN-BiGRU的事件检测[J].西安电子科技大学学报,2022(5):181-188. WANG K,WANG M Y,LIU X,et al.Event detection by combining self?attention and CNN-BIGRU[J].Journal of Xidian University,2022(5):181-188. [62] TRIEU H L,TRAN T T,DUONG K N A,et al.DeepEventMine:end-to-end neural nested event extraction from biomedical texts[J].Bioinformatics,2020,36(19):4910-4917. [63] 胡慧君,王聪,代建华,等.基于BiLSTM-CRF的社会突发事件研判方法[J].中文信息学报,2022,36(3):154-161. HU H J,WANG C,DAI J H,et al.Social emergency event judgement based on BiLSTM-CRF[J].Journal of Chinese Information Processing,2022,36(3):154-161. [64] 李旭晖,程威,唐小雅,等.基于多层卷积神经网络的金融事件联合抽取方法[J].图书情报工作,2021,65(24):89-99. LI X H,CHENG W,TANG X Y,et al.A joint extraction method of financial events based on multi-layerconvolutional neural networks[J].Library and Information Service,2021,65(24):89-99. [65] 丁思媛,乔晓东,张运良.基于事件抽取技术的听证公开文本挖掘方法研究[J].情报杂志,2022,41(1):23. DING S Y,QIAO X D,ZHANG Y L.Research on mining method of public hearing text based on eventextraction tech-nology[J].Journal of Intelligence,2022,41(1):23. [66] 林海伦,王元卓,贾岩涛.面向网络大数据的知识融合方法综述[J].计算机学报,2017,40(1):1-27. LIN H L,WANG Y Z,JIA Y T.Network big data oriented knowledge fusion methods:a survey[J].Chinese Journal of Computers,2017,40(1):1-27. [67] GANEA O E,HOFMANN T.Deep joint entity disambiguation with local neural attention[J].arXiv:1704. 04920,2017. [68] HU L,DING J,SHI C,et al.Graph neural entity disambiguation[J].Knowledge-Based Systems,2020,195:105620. [69] 邓启平,陈卫静,嵇灵,等.一种基于异质信息网络的学术文献作者重名消歧方法[J].数据分析与知识发现,2022(4):60-68. DENG Q P,CHEN W J,JI L,et al.Author name disambiguation based on heterogeneous information network[J].Data Analysis and Knowledge Discovery,2022(4):60-68. [70] HOBBS J.Resolve pronoum references[J].Lingua,1978,44. [71] GROSZ B J,JOSHI A K,WEINSTEIN S.Centering:a framework for modeling the local coherence of discourse[J].Computation Linguistics,2002,21(2):203-225. [72] IVAN P F,ALAN B S.A theory for record linkage[J].Journal of the American Statistical Association,2012,64:328. [73] 张富,杨琳艳,李健伟,等.实体对齐研究综述[J].计算机学报,2022,45(6):1195-1225. ZHANG F,YANG L Y,LI J W,et al.An overview of entity alignment methods[J].Chinese Journal of Computers,2022,45(6):1195-1225. [74] MUDGAL S,LI H,REKATSINAS T,et al.Deep learning for entity matching:a design space exploration[C]//Proceedings of the 2018 International Conference on Management of Data,2018:19-34. [75] WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//Proceedings of the World Wide Web Conference,2019:2022-2032. [76] ZENG W,ZHAO X,TANG J,et al.Collective embeddingbased entity alignment via adaptive features,CoRR abs[J].arXiv:2019.08404,2020. [77] 杨飞洪,孙海霞,李姣.一种文本相似度与BERT模型融合的手术操作术语归一化方法[J].中文信息学报,2021,35(4):44-50. YANG F H,SUN H X,LI J.A method for surgery term normalization based on text similarity and BERT model[J].Journal of Chinese Information Processing,2021,35(4):44-50. [78] 谭永杰,文敏,朱月琴,等.地质数据的大数据特性研究[J].中国矿业,2017,26(9):80. TAN Y J,WEN M,ZHU Y Q,et al.Research on the big data characteristics of geological data[J].China Mining Magazine,2017,26(9):80. [79] WAN S,LAN Y,GUO J,et al.A deep architecture for semantic matching with multiple positional sentence representations[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,2016:2835-2841. [80] LU Z,LI H.A deep architecture for matching short texts[C]//Advances in Neural Information Processing Systems,2013. [81] WANG G,HU Y,TIAN X,et al.An integrated open approach to capturing systematic knowledge for manufacturing process innovation based on collective intelligence[J].Applied Sciences,2018,8(3). [82] 朱祥,张云秋.近年来知识融合研究进展与趋势[J].图书情报工作,2019,63(16):143-150. ZHU X,ZHANG Y Q.Progress and trend of knowledge fusion research in recent years[J].Library and Information Service,2019,63(16):143-150. [83] MCINNES B T.VCU at Semeval-2016 task 14:evaluating similarity measures for semantic taxonomy enrichment[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics,2016. [84] 邱凌,张安思,李少波,等.航空制造知识图谱构建研究综述[J].计算机应用研究,2022(4):968-977. QIU L,ZHANG A S,LI S B,et al.Survey on building knowledge graphs for aerospace manufacturing[J].Application Research of Computers,2022(4):968-977. [85] 封皓君,段立,张碧莹.面向知识图谱的知识推理综述[J].计算机系统应用,2021,30(10):21-30. FENG H J,DUAN L,ZHANG B Y.Overview on knowledge reasoning for knowledge graph[J].Computer Systems & Applications,2021,30(10):21-30. [86] HAARSLEV V,M?ELLER R.RACER system descrip-tion[C]//Proceedings of the International Joint Conference on Automated Reasoning,2001:701-705. [87] TSARKOV D,HORROCKS I.Fact++ description logic reasoner:system description.[C]//Proceedings of the 3rd International Joint Conference on Automated Reasoning,2006. [88] CARROLL JJ,DICKINSON I,DOLLIN C,et al.JENA:implementing the semantic web recommendations[C]//Proceedings of the International World Wide Web Conference on Alternate Track Papers & Posters,2004. [89] PEDRINACI C,BERNARAS A,SMITHERS T,et al.A framework for ontology reuse and persistence integrating UML and sesame[C]//Proceedings of the Conference on Current Topics in Artificial Intelligence,Conference of the Spanish Association for Artificial Intelligenc,2004. [90] LEE T W,LEWICKI M S.Blind source separation of more sources than mixtures using over complete representations[J].IEEE Signal Processing Letters,1999,6(4):87-90. [91] LAO N,MITCHELL T M,COHEN W W.Random walk inference and learning in a large scale knowledge base[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing,2011. [92] GALáRRAGA L,TEFLIOUDI C,HOSE K,et al.Fast rule mining in ontological knowledge bases with amie+[J].Vldb Journal,2015,24(6):707-730. [93] 刘鹏,叶帅,舒雅,等.煤矿安全知识图谱构建及智能查询方法研究[J].中文信息学报,2020,34(11):49-59. LIU P,YE S,SHU Y,et al.Coalmine safety:knowledge graph construction and its QA approach[J].Journal of Chinese Information Processing,2020,34(11):49-59. [94] 马连博.基于遗传算法优化神经网络的露天矿知识图谱构建方法:CN113569055A[P].2021-10-29. MA L B.Construction method of open-pit mine knowledge map based on neural network optimization by genetic algo-rithm:CN113569055A[P].2021-10-29. |
[1] | ZHANG Jiayu, GUO Mei, ZHANG Yongliang, LI Mei, GENG Nan, GENG Yaojun. Research on Construction of Fine-Grained Knowledge Graph of Apple Diseases and Pests [J]. Computer Engineering and Applications, 2023, 59(5): 270-280. |
[2] | ZHANG Mingxing, ZHANG Xiaoxiong, LIU Shanshan, TIAN Hao, YANG Qinqin. Review of Recommendation Systems Using Knowledge Graph [J]. Computer Engineering and Applications, 2023, 59(4): 30-42. |
[3] | WU Guodong, WANG Xueni, LIU Yuliang. Research Advances on Graph Neural Network Recommendation of Knowledge Graph Enhancement [J]. Computer Engineering and Applications, 2023, 59(4): 18-29. |
[4] | XIAO Lizhong, ZANG Zhongxing, SONG Saisai. Research on Cascaded Labeling Framework for Relation Extraction with Self-Attention [J]. Computer Engineering and Applications, 2023, 59(3): 77-83. |
[5] | WANG Yiru, SHI Donghui. Ontology Construction of Architectural Intangible Cultural Heritage Knowledge Using CIDOC CRM [J]. Computer Engineering and Applications, 2023, 59(3): 317-326. |
[6] | JING Li, YAO Ke. Research on Text Classification Based on Knowledge Graph and Multimodal [J]. Computer Engineering and Applications, 2023, 59(2): 102-109. |
[7] | HU Hao, GAO Jing, LIU Zhenyu. Research and Construction of Genetic Knowledge Graph of Milk Yield Traits in Dairy Cows [J]. Computer Engineering and Applications, 2023, 59(2): 299-305. |
[8] | LUO Chengtian, YE Xia. Survey on Knowledge Graph-Based Recommendation Methods [J]. Computer Engineering and Applications, 2023, 59(1): 49-60. |
[9] | ZHANG Haitao, SU Lin. Variational Auto-Encoder Combined with Knowledge Graph Zero-Shot Learning [J]. Computer Engineering and Applications, 2023, 59(1): 236-243. |
[10] | XU Youwei, ZHANG Hongjun, CHENG Kai, LIAO Xianglin, ZHANG Zixuan, LI Lei. Comprehensive Survey on Knowledge Graph Embedding [J]. Computer Engineering and Applications, 2022, 58(9): 30-50. |
[11] | ZHANG Xin, LIU Siyuan, XU Yanling. Knowledge-Aware Recommendation Algorithm Combined with Attention Mechanism [J]. Computer Engineering and Applications, 2022, 58(9): 168-174. |
[12] | WANG Yu, WANG Xin, ZHANG Shujuan, ZHENG Guoqiang, ZHAO Long, ZHENG Gaofeng. Research on Efficient Knowledge Fusion Method for Heterogeneous Big Data Environments [J]. Computer Engineering and Applications, 2022, 58(6): 142-148. |
[13] | YAN Zhihao, LIU Jingju, GUO Hui, GUO Bingyang. CDN Domain Recognition Method Based on DNS Knowledge Graph [J]. Computer Engineering and Applications, 2022, 58(6): 149-156. |
[14] | TANG Hong, FAN Sen, TANG Fan , ZHU Longjiao. Recommendation Algorithm Combining Knowledge Graph and Attention Mechanism [J]. Computer Engineering and Applications, 2022, 58(5): 94-103. |
[15] | XIONG Zhongmin, MA Haiyu, LI Shuai, ZHANG Na. Summary of Application and Prospect Analysis of Knowledge Graphs in Marine Field [J]. Computer Engineering and Applications, 2022, 58(3): 15-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||