WANG Qiyun, ZHENG Zhongtuan. Application of CEEMDAN-HURST Algorithm in COVID-19 Prediction[J]. Computer Engineering and Applications, 2023, 59(7): 261-268.
[1] CASDAGLI M.Nonlinear prediction of chaotic time series[J].Physical D Nonlinear Phenomena,1989,35:335-356.
[2] 张冬青,宁宣熙,刘雪妮.基于RBF神经网络的非线性时间序列在线预测[J].控制理论与应用,2009,26(2):151-155.
ZHANG D Q,NING X X,LIU X N.Online prediction of nonlinear time series based on RBF neural network[J].Control Theory and Applications,2009,26(2):151-155.
[3] HAN L,DING L,DENG L F.Chaotic time series prediction using fuzzy sigmoid kernel-based support vector machines[J].Chinese Physics,2006,15(6):1196-1200.
[4] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings Mathematical Physical & Engineering Sciences,1998,454:903-995.
[5] ZHAO H W,HUANG N E.Ensemble empirical mode decomposition:a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,2009(1):1-41.
[6] YEH J R,SHIEH J S,HUANG N E.Complementary ensemble empirical mode decomposition:a novel noise enhanced data analysis method[J].Advances in Adaptive Data Analysis,2010,2(2):135-156.
[7] TORRES M E,COLOMINAS M A,SCHLOTTHAUER G,et al.A Complete ensemble empirical mode decomposition with adaptive noise[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2011:4144-4147.
[8] 徐利,徐久强,冯家乐.结合CEEMDAN与改进区间阈值的ECG降噪研究[J].小型微型计算机系统,2020,41(8):1576-1579.
XU L,XU J Q,FENG J L.Research on ECG denoising combined with CEEMDAN and improved interval threshold[J].Journal of Chinese Computer Systems,2020,41(8):1576-1579.
[9] HURST H E.Long-term storage capacity of reservoirs[J].Transactions of the American Society of Civil Engineers,1951,116:770-799.
[10] 朱沙,李双琦.基于分形理论的上海证券市场有效性实证检验[J].西部论坛,2016,26(2):90-97.
ZHU S,LI S Q.Empirical test of Shanghai stock market effectiveness based on fractal theory[J].Western Forum,2016,26(2):90-97.
[11] YIM K,OH G,KIM S.An analysis of the financial crisis in the KOSPI market using Hurst exponents[J].Physical A:Statistical Mechanics and its Applications,2014,410:327-334
[12] 高路.基于分形市场理论的中国证券市场实证分析[D].大连:东北财经大学,2010.
GAO L.Empirical analysis of Chinese securities market based on fractal market theory[D].Dalian:Dongbei University of Finance and Economics,2010.
[13] 龚云,信杰,南守琎.一种引入Hurst指数的MEMS陀螺仪去噪模型[J].大地测量与地球动力学,2022,42(5):457-461.
GONG Y,XIN J,Nan S J.A denoising model of MEMS gyroscope with Hurst exponent[J].Journal of Geodesy and Geodynamics,2022,42(5):457-461.
[14] YANG Y F,QIN Y,JIA L M,et al.Traffic safety region estimation based on SFS?PCA?LSSVM:an application to highway crash risk evaluation[J].International Journal of Software Engineering & Knowledge Engineering,2016,26(9/10):1555-1570.
[15] GAO S Z,LI T C,ZHANG Y M.Rolling bearing fault diagnosis of PSO?LSSVM based on CEEMD entropy fusion[J].Transactions of the Canadian Society for Mechanical Engineering,2020,44(3):405-418.
[16] 范如国,王奕博,罗明,等.基于SEIR的新冠肺炎传播模型及拐点预测分析[J].电子科技大学学报,2020,49(3):369-374.
FAN R G,WANG Y B,LUO M,et al.COVID-19 transmission model and inflection point prediction based on SEIR[J].Journal of University of Electronic Science and Technology of China,2020,49(3):369-374.
[17] 严阅,陈瑜,刘可伋,等.基于一类时滞动力学系统对新型冠状病毒肺炎疫情的建模和预测[J].中国科学:数学,2020,50(3):385-392.
YAN Y,CHEN Y,LIU K J,et al.Modeling and prediction of COVID-19 epidemic based on a class of time-delay dynamics Systems[J].Science China:Mathematics,2020,50(3):385-392.
[18] 曾杰,张华.基于最小二乘支持向量机的风速预测模型[J].电网技术,2009,33(18):144-147.
ZENG J,ZHANG H.Wind speed prediction model based on least square support vector machine[J].Power System Technology,2009,33(18):144-147.
[19] 王凯,侯著荣,王聪丽.基于交叉验证SVM的网络入侵检测[J].测试技术学报,2010,24(5):419-423.
WANG K,HOU Z R,WANG C L.Network intrusion detection based on cross-validation SVM[J].Journal of test and Measurement Technology,2010,24(5):419-423.